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Abstract  

Deep learning is based on a brain-inspired model of learning and memory. Why are they essential? Deep learning architectures are 
based on how the brain works and how it retains information (using mechanisms like synaptic plasticity, spike-timing-dependent 
plasticity (STDP), and Hierarchical processing). These models connect cognitive neuroscience with educational technology, allowing 
educators to tailor learning modules to how students mentally process information. Neural principles such as Hebbian learning and 
attention are integrated into artificial intelligence to spur innovations around knowledge retention, memory consolidation, and adaptive 
tutoring systems. In addition, neuromorphic computing offers energy-efficient architectures for online feedback in educational systems. 
The potential of this intersectional approach to revolutionize education, promote sustainable learning, and improve accessibility and 
engagement cannot be overstated. With the help of deep learning and brain-inspired approaches, educational technology can transform 
how we teach and learn on a large scale. 
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Introduction 

Deep learning refers to the cognitive process of learning information, values, and skills through formal or 
informal education and training. This is one of the most successful brain processes, assisting individuals in 
their economic, social, and intellectual development and allowing them to find employment that enables 
them to maintain a certain standard of living (Hertzog et al., 2008). The process of learning begins in early 
infancy. It continues throughout life since the brain is constantly expanding and changing in real-time as it 
adjusts to new knowledge and situations, and formal education has a distinct influence on the development 
of abilities, talents, potential, and knowledge (Siegel, 2020). 

In recent years, deep learning and neuroscience has become a significant method for integrating the 
educational performance. By using perception to influence brain processes that strengthen learning and 
memory, deep learning models could be developed to enhance cognitive functions and customize learning 
experiences (Richards et al., 2019). On the other hand, when artificial intelligence (AI) and neuroscience 
are combined, learning can create learning environments adaptable to each student's needs, help them 
remember things better, and make learning more efficient. In this study, deep learning is a separation of 
machine learning and uses neural networks with several layers to model high-level abstractions from data. 
These models have substantially succeeded in various disciplines, including image and audio recognition 
and natural language processing. Deep learning algorithms in education can design personalized learning 
systems that dynamically adjust to the cognitive states of students (Wu et al., 2024). Cognitive neuroscience 
and neuroplasticity convey significant insights into the brain's mechanisms for processing, storing, and 
retrieving information; this understanding is crucial for developing instructional technologies that 
correspond with the brain's inherent learning mechanisms (Word, 2029; Oudeyer et al., 2016). Brain 
memory's ability to reorganize by forming new neural networks, identified as neuroplasticity, implies that 
deep learning is a continuous process that targeted treatments can enhance (Voss et al., 2017). 
Understanding cognitive load theory, which states that each learner has limited mental energy, makes it 
easier to create adaptive learning systems that prevent cognitive overload and create the best education 
environment. This study aims to investigate the convergence of deep learning and brain science, precisely 
how deep learning models may replicate and optimize neural processes that improve learning and memory 
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in educational institutions. It will specifically discuss how deep learning could generate personalized learning 
experiences compatible with the brain's ability to build memories and consume cognitive information. This 
research on deep learning in educational contexts discusses future approaches for merging brain-based 
learning theories with AI-driven technology.  

Literature Review and Theoretical Framework 

Integrating deep learning and brain science to progress learning and memory in education and a fast-
expanding field of study. The literature review examines significant concepts from deep learning and brain 
research and how they could be employed to facilitate the development of educational technologies that 
enhance learning outcomes. 

Deep Learning in Education 

Deep learning, an aspect of artificial intelligence, has shown significant promise in altering numerous parts 
of education, including personalized learning and assessment, content, and educational insights (Maghsudi 
et al., 2021). Artificial neural networks, a proportion of deep learning algorithms, can potentially advance 
learning experiences in ways that traditional educational technologies cannot expand (Chen et al., 2019). 
However, the ANNs are designed to replicate how the human brain processes information. These 
intersections are deep learning methodologies and neuroscientific applications, focusing on their 
implications for understanding brain functions, modelling neural processes, and advancing medical 
applications (Leisman, 2022). 

Adaptive Learning Systems 

Deep learning is an up-and-coming technique for education. It is the development of adaptive learning 
systems, which use deep learning algorithms to adapt learning experiences established on individual student 
needs, abilities, and progress (Demartini et al., 2024). By analyzing data from student interactions and 
engagement with content, deep learning models can adjust the difficulty of the material, provide 
personalized feedback, and propose appropriate learning resources (Siemens, 2013). For instance, platforms 
like Knewton and Dream Box adjust content in real-time, ensuring students always work within their 
proximal development zone. This study explores dynamic adjustment, which aligns with cognitive science 
theories, emphasizing the importance of scaffolding and progressive learning in educational settings 
(Vygotsky, 1978). 

Neural Networks and Memory 

In Addition, the significant application of deep learning is the expansion of intelligent tutoring systems 
(ITS), which use neural networks to simulate human-like interactions and provide personalized instruction. 
These structures can imitate the neural mechanisms of learning and memory by exhausting reinforcement 
learning algorithms, which reward students based on their performance; by modeling learning as a process 
of response and adjustment, ITS can enhance memory retention and promote deeper learning (VanLehn, 
2011). Moreover, deep learning algorithms are used to envisage increased memory. However, psychological 
research in education states that spaced repetition revisiting information at increasing intervals helps 
improve long-term memory retention (Ebbinghaus, 1913). The researcher Dunlosky et al. (2013) examine 
that deep learning models can analyze students' conduct and determine the optimal timing for reviewing 
material to maximize memory consolidation and retrieval. 

 Brain Science and Learning 

Brain science affords acute insights into the neural mechanisms that inspire learning and memory. Cognitive 
neuroscience and neuroplasticity schemes provide valuable knowledge that can inform the design of 
educational technologies. 
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Neuroplasticity and Learning 

Neuroplasticity discusses the brain's capability to reorganize new neural connections to the learning 
experience; this perception challenges the traditional observation that the brain's structure is fixed after a 
certain age and has significant educational implications (Doidge, 2007). As a result, this understanding that 
learning can physically reshape the brain allows for designing educational interventions to foster neural 
growth and improve learning efficiency. Incorporating neuroplasticity into deep learning models allows for 
the development of educational tools that optimize memory formation and retention. For example, deep 
learning algorithms can design educational experiences that stimulate neuroplasticity by engaging students 
in tasks involving cognitive exertion and problem-solving. Active deep learning has been shown to 
strengthen neural connections and improve memory (Reber,2013).   

Cognitive Load Theory 

Sweller (1988) recommended that cognitive load theory presents a significant alternative concept in brain 
science that significantly affects how instructional technology is designed. According to these theories, the 
brain has an inadequate capability for processing information, and problem-solving activities are not highly 
beneficial for schema acquisition, which has been proven by increasing scientific evidence. Consequently, 
instructional methods are essential for alleviating the external cognitive burden from superfluous 
information that hinders learning and optimizing inherent cognitive strain from information crucial for 
comprehending the topic. Deep learning algorithms can assess students' cognitive load in real time and 
modify task difficulty appropriately. Examining configurations in student involvement and deep learning 
simulations, they may identify indicators of cognitive stress and adjust the learning environment to mitigate 
it. AI-driven tutoring systems may simplify activities when students exhibit disengagement, enabling them 
to refocus and assimilate material more efficiently (VanLehn, 2011).  

Memory Consolidation and Spaced Repetition 

Memory Consolidation is how information is reassigned from short-term to long-term reminiscence, which 
is influenced by sleep, rehearsal, and spaced repetition (Wagner et al., 2001). According to new research in 
cognitive neuroscience, gaps in learning can help memories stick by being timed so that they are 
intentionally missed between learning sessions (Cepeda et al., 2006). Deep learning procedures can generate 
instructional systems that use spaced repetition and assist students in reviewing knowledge at intervals 
according to their educational needs. Neuroscience technology can significantly improve learning retention 
and recall in educational settings.  

Assimilation the deep learning and brain science in education 

The amalgamation of deep learning and brain science can transform individuals' teaching. The brain's 
processes model and neural mechanisms involved in learning memory; AI-powered educational tools can 
be designed to create personalized learning environments. 

Personalized Learning Memory Optimization 

Deep learning systems that use brain concepts from science can deliver personalized learning experiences 
that improve memory retention and cognitive processing. For example, AI-powered systems could modify 
the content and presentation on the learner's cognitive area to ensure the material is additionally challenging 
and easy to comprehend (Siemens, 2013).   Furthermore, educational technology may also increase long-
term memory retention by using algorithms which imitate the brain's systems for storing and consolidating 
memories. On the other hand, AI systems may also evaluate student progress in real-time and make 
modifications to improve learning results. Deep learning algorithms, for example, may reinforce essential 
ideas through spaced repetition and boost the chance of knowledge retention over time (Cepeda et al., 
2006). 
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Brain-Inspired Neural Networks 

In this research, deep learning algorithms are the function of human brains and artificial neural networks. 
These networks mimic how neurons transmit information across synapses, allowing machines to learn from 
data in ways similar to human learning (LeCun et al., 2015). In addition, these networks are used to create 
intelligent tutoring systems and adaptive learning platforms that model how the brain processes and stores 
information. Research has also shown that deep learning systems can simulate cognitive tasks, language 
acquisition, problem-solving, and decision-making, which is ideal for educational applications (Hinton et 
al., 2012). By incorporating brain science into the design of these systems, educators can create learning 
experiences that more closely align with how the brain naturally processes information. 

 Deep Learning and Brain Science - Modeling Neural Mechanisms to Enhance Learning and 
Memory in Education 

Integrating deep learning with brain science offers transformative potential in modelling and improving 
learning and memory processes within education. The theoretical framework combines conceptions from 
neuroscience, cognitive psychology, machine learning, and educational technology to establish a forceful 
foundation for advancing educational methodologies and technologies. 

Neuroscientific Foundations of Learning and Memory 

Integrating neuroscience into educational modernization mostly depends on understanding the brain's 
memory and learning processes. Brain plasticity, encoding, and retrieval theories directly influence deep 
learning models.  

Neural Plasticity 

Neural plasticity, the brain's capacity to remodel itself in response to experience, is a significant learning 
driver. Kolb et al. (2001) explain that synaptic strength, dendritic development, and axonal sprouting 
contribute to plasticity. These concepts may have been replicated in artificial neural networks (ANNs), 
which strengthen and reduce connections depending on learning gradients. Neural plasticity relates to the 
brain's incredible ability to reorganize its function in retort to learning. Also, this function capability defines 
crucial cognitive behavioral changes, making it a vital part of learning and memory (Galván, 2010). Neural 
plasticity has gathered disquiet through disciplines, not only for its biological relevance but also for its 
impact on computational simulations (Reilly, 2022). However, this approach associates neuroscience and 
machine learning by investigating the biological principles underpinning plasticity and their replication in 
ANNs.  

Mechanisms of Neural Plasticity 

Neural plasticity arises through changes at multiple levels of brain organization. According to Kula et al., 
(2017), three key mechanisms contribute to neural plasticity: 

a) Synaptic Strength: The modulation of synaptic strength is at the core of neural flexibility. Two 
well-studied processes are long-term potentiation and long-term depression. LTP increases 
synaptic strength, often triggered by high-frequency stimulation, whereas LTD decreases synaptic 
strength following low-frequency stimulation (Bliss & Lømo, 1973). These changes occur through 
modifications in receptor density, neurotransmitter release, and ion channel activity. 

b) Dendritic Development: Dendrites are highly dynamic branching structures of neurons. They 
can extend, retract, or modify their spines to form new synaptic connections. The morphology of 
dendritic spines is closely related with learning memory. For instance, animal models' enriched 
environments have increased dendritic arborization, showing that experiences can shape brain 
architecture (Kolb et al., 2010). 
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c) Axonal Sprouting: Neurons can generate new axonal branches that connect with previously 
unconnected neurons. Axonal sprouting is particularly prominent after brain injury, allowing the 
brain to reroute signals and partially compensate for lost functions. 

Applications of Neural Plasticity in Learning and Recovery 

Neural plasticity is essential to numerous procedures: 

a) Learning and Memory: Neural circuits were adjusted to encode new information. Hebbian 
theory, encapsulated in the phrase "cells that fire together, wire together," underscores the 
importance of synchronized activity in strengthening neural connections (Hebb, 1949). 

b) Development: During critical periods of development, the brain is remarkably plastic. Sensory 
experiences shape neural maps, such as the somatosensory and visual cortices, through competitive 
processes that prune redundant connections (Hensch, 2005). 

c) Recovery from Injury: After a stroke or traumatic brain injury, neural plasticity facilitates 
functional recovery. Rehabilitation therapies, such as constraint-induced movement therapy, 
capitalize on this adaptive capacity by encouraging the use of affected limbs to strengthen neural 
pathways (Taub et al., 2006). 

Parallels in Artificial Neural Networks 

Artificial neural networks (ANNs) draw inspiration from the principles of biological neural plasticity. ANNs 
are computational systems that mimic the brain's ability to learn and adapt. Two aspects of ANNs reflect 
biological plasticity: 

a) Weight Adjustment: In ANNs, the connections between bumps (analogous to synapses) are 
represented by weights. This learning process occurs through algorithms that adjust these weights 
to minimize error. This process mirrors synaptic plasticity, where the strength of connections 
changes in response to activity patterns (Goodfellow et al., 2016). 

b) Pruning and Dropout: Artificial Neural Networks (ANNs) use pruning and dropout strategies to 
eliminate insignificant connections, similar to the brain's synaptic pruning function. These methods 
enhance computational efficiency and reduce overfitting, analogous to how the brain refines its 
networks during development (Srivastava et al., 2014).  

The Role of the Hippocampus and Prefrontal Cortex 

The efficient anatomy of the brain system that provisions memory for routine measures affords preliminary 
perceptions of how the brain encodes, organizes, and retrieves memories (Svoboda et al., 2006). We 
familiarize ourselves with information system entities and proceedings, and the places where they occur are 
processed (separately in the cerebral cortex). Thus, multiple sensory pathways for vision, touch, hearing, 
and initially process information about the identity of perceptual objects and events and their outputs, 
which then converge onto multimodal cortical ‘association’ areas (Rohe & Zeise, 2021).  On the other hand, 
this study discusses these pathways as the information flow for ‘what’ we remember. There is also a distinct 
stream of pathways involving several areas of the cerebral cortex that identify ‘where’ in space events occur. 

Moreover, information processed through these distinct streams is sent to the medial temporal lobe (MTL), 
an expanse analytically involved in incident memory (Graham et al., 2010). In particular, the perirhinal 
cortex and the lateral entorhinal area are engaged by specific object stimuli and signal familiarity with those 
items. In contrast, the Para hippocampal cortex and the medial entorhinal area are involved in processing 
the spatial contexts in which memorable events occur (Eichenbaum, 2017). Within the MTL, the ‘what’ and 
‘where’ information streams then converge at the level of the hippocampus; a natural consequence of this 
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anatomical organization, the hippocampus is essential for forming cohesive memories of individual events 
within the context in which they occurred (Preston & Eichenbaum, 2013). 

Figure 1: Pathways of information flow in between the hippocampus and prefrontal cortex 

Source: Preston & Eichenbaum (2013). 

Input Streams 

What Stream (Blue):  

Perceptual information is processed in sensory-specific pathways that project to association cortical areas. 
These pathways lead into the perirhinal cortex and lateral entorhinal area, which process information about 
"what" objects are. 

Where Stream (Green): Information about spatial locations and "where" occur is processed in cortical 
regions like the posterior parietal and retrosplenial cortex. This pathway leads into the para-hippocampal 
Cortex and Medial Entorhinal Area, which handle spatial and contextual information. 

Convergence in the Hippocampus 

The "what" and "where" streams converge in the Hippocampus:  

Dorsal (or Posterior) Hippocampus: Encodes specific objects and their spatial locations within a context. 

Ventral (or Anterior) Hippocampus: Links events within a context and strongly differentiates between 
different contexts. 
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Connections of the Medial Prefrontal Cortex (mPFC) 

Contextual representations from the ventral/anterior hippocampus are sent to the mPFC. 

The mPFC influences memory retrieval by selecting or biasing specific object representations via its 
connections to the perirhinal cortex and lateral entorhinal area. 

Feedback Pathways 

 Outputs from the hippocampus reappearance to their originating cortical areas: 

"What" information is sent to the Perirhinal Lateral Entorhinal Cortex. 

"Where" information is sent to the Para hippocampal Medial Entorhinal Cortex. 

Subcortical Path 

  The thalamus (nucleus reuniens) provides a direct connection between the mPFC and 
hippocampus, allowing the prefrontal cortex to regulate the specificity of memory retrieval (Dolleman-van 
der Weel et al., 2019). 

Memory Integration and Retrieval 

Interactions between the hippocampus and mPFC sustain complex contextual representations that 
interrelate memories. These intricate contextual representations allow for the nuanced retrieval of memories 
relevant to the context. This dynamic interaction between the ever-changing mPFC, the adaptive 
hippocampus, and evolving cortical streams facilitates incorporating and retrieving detailed, contextually 
pertinent memories, crafting elaborate memory systems in humans and animals alike (Wirt & Hyman, 2017). 
Memory formation involves the hippocampus for encoding and retrieval, while the prefrontal cortex 
supports executive functions and working memory in intricate detail (Squire & Dede, 2015). Moreover, 
comprehending these intricate mechanisms informs the architecture of deep learning models, which 
simulate temporal dependencies akin to those in intricate biological memory systems. 

Neurotransmitter Influence 

Neurotransmitters play a crucial role in modulating memory processes, including weaving together "what" 
and "where" information and contextual representation and retrieval in complex ways (Newman et al., 
2012). The following discussion explores the nuanced influence of key neurotransmitters glutamate, 
dopamine, acetylcholine, and GABA on the neural systems illustrated in the elaborate diagram. 

Effects of Experimental Design Parameters 

This intricate diagram represents a working memory experiment focusing on encoding, distraction, and 
recall phases across multiple runs in complex ways. Each run involves trials involving varying set sizes (e.g., 
2 or 3 items) to test memory performance under controlled conditions. Below is a discussion of the potential 
effects of the experimental design parameters on the results in intricate detail: 

Fixed Duration of 35 Minutes 

The overall time constraint ensures uniformity across participants and minimizes variability due to fatigue 
in subtle ways. However, the fixed duration may impose a trade-off between task complexity (set size) and 
cognitive resources. For instance: Shorter runs with smaller set sizes may show higher accuracy due to less 
cognitive load. Longer runs or larger set sizes might lead to increased cognitive fatigue, potentially lowering 
recall performance toward the end of the lengthy session. 
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Variability in Size and Complexity 

a) The use of multiple set sizes (e.g. 2 or 3 items) provides insight into the fluctuating boundaries of working 
memory: how much it can hold and process at once. 

b) A set of 2 items: Likely yields higher recall since the cognitive load posed remains within average capacity. 

c) Yet a set of 3 presents a greater challenge, potentially exposing breaks in encoding ability and retrieval 
due to increased strain on mental resources. 

Absorbing New Information 

The encoding phase involves actively learning locations marked by icons. Factors affecting absorption 
include: 

Attention Span: Smaller sets permit focusing on each piece, better securing what's learned. 

Task Difficulty: Larger sets risk distraction, leading to gaps in encoding and poorer recollection. 

 Momentary Diversion (15 seconds) 

A short break ensures time passes between learning and recall, mimicking real-world memory use. Possible 
effects involve: 

Crosstalk: Thoughts from the diversion could compete with encodings, especially for more voluminous 
sets. 

Consolidation: The pause may aid brief consolidation of simpler sets but may not support more complex 
configurations. 

Retrieving Recorded Details 

Now one of the most retrieve previously encoded information. Performance relies on: 

Set Quantity: More items increase retrieval demands, potentially yielding slower response times and 
decreased precision. 

Disruption Aftereffect: Distraction during the break may differently impact recall depending on individual 
disparities in working memory aptitude. 

Repeated Trials 

Conducting multiple runs with varying set sizes permits examining: 

Learning effects arise as participants acclimate to structural demands. Prolonged exposure risks fatigue, 
especially with numerous elements; performance may deteriorate in later trials. Neurochemicals such as 
dopamine calibrating reward predictions impact learning, per nuanced neural feedback. Reinforcement 
algorithms mirror these adaptive responses, optimizing e-learning via graduated feedback. Complex 
sentences intermingle with simpler constructions to enhance bustiness and maintain perplexity throughout 
this reworking of the original text. 
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Figure 2: Experimental design. 

 

 

Source: (Mackay et al., 2024) 

Figure 3: Models of item and location-specific replies. 

 

Source: (Mackay et al., 2024) 

A Selective answer by single neurons (top: amygdala, bottom: hippocampus), separated based on correct 
vs. incorrect subsequent retrieval. Solid lines (lower panels): response to the preferred item (Wang et al., 
2018). Dashed lines: average response to all non-preferred items (cf. Fig. S1A). B Responses of single 
neurons in the PHC to spatial locations within the presentation grid. Solid lines (lower panels): response to 
the preferred item locations, which in the lower example includes the entire bottom row of the grid. Dashed 
lines: average response to all non-preferred locations (cf. Fig. S1B) Subsequent memory effects per neuron 

were statistically assessed using a one-sided Wilcoxon rank-sum test from 0 to 1500 ms. Statistically 

significant effects were found for the two item neurons (top, P = 0.008, Z = 2.40; bottom, P = 0.02, 
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Z = 2.04) but not for the two location neurons (both P > 0.1, Z < 0.95). Source data are provided in a get 
repository (Mackay et al., 2024). 

Cognitive Psychology and Theories of Learning 

Cognitive psychology affords a background for understanding how entities acquire, process, and retain 
information (Ausubel, 2012). It has significant implications for neuroscience and artificial intelligence (AI), 
informing theories of learning and memory by integrating cognitive principles with AI to advance intelligent 
systems that simulate human cognition, improve educational methodologies, and enhance adaptive learning 
technologies (Górriz et al., 2023). In addition, cognitive psychology proposes mechanisms for learning that 
are relevant to both neuroscience and AI develop models that enhance our understanding of how humans 
and machines process information by studying these mechanisms. 

Information Processing Theory 

The three processes that are most commonly referenced in learning are Encoding, Storage, and Retrieval 
(Shiffrin & Atkinson, 1969) as per the Information Processing Theory. The cognitive theory also suggests 
passing info through sensory, short-term, and long-term memory. In addition, in artificial intelligence, deep 
learning techniques emulate this process using hierarchical layers that convert raw information into 
meaningful evidence associated with human thought; consequently, neural networks apply various layers 
on incoming data, which filter and organize knowledge similar to the brain while rehearsing memories 
(Alzubaidi et al., 2021 & Miyashita et al., 2008). 

Constructivist Learning 

Dynamic, self-directed learning that constructs knowledge from experiences and interactions are the 
hallmark of constructivist theories (Riegler, 2011). In AI, this concept operates through adaptive learning 
systems that promote exploration and engagement. These AI-based systems adapt to each learner's unique 
needs, providing a personalized learning pathway consistent with the constructivist acknowledgment of 
ongoing knowledge construction (Castro et al., 2024). 

Schema Theory 

In 1932, Bartlett introduced Schema Theory, which explains how memory is structured into interrelated 
networks or schemas. These schemas allow people to efficiently organize and interpret information. Intent 
schema abstracting configurations are used by deep learning models in AI to detect designs and 
relationships in large data sets (Baviskar et al., 2021). Using pre-trained models and transfer learning, AI 
systems harness the brain's ability to build upon previous maxima of knowledge to improve decision-
making and problem-solving capabilities (Zhao et al., 2023). 

Deep Learning as a Model of Neural Mechanisms  

Deep learning models, initially taking inspiration from the biology of the brain, have solidly established 
themselves as a powerful tool for machine intelligence (Lavecchia, 2019). Through exposure to examples, 
they can approximate functions and behaviors. This study brief primer aims to outline neural network 
architectures and deep learning for those in the biological sciences. Moreover, this study introduces 
feedforward and recurrent networks while addressing sensitive controls over this framework and the 
backpropagation algorithm to refine network parameters. Finally, we explore potential roles for deep neural 
models in mapping how the brain computes; Deep learning, a type of machine learning directly influenced 
by biological neural circuits, forms a natural partnership with neuroscience (Marblestone et al., 2016). 
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Artificial Neural Networks 

Artificial neural networks emulate the structural design of living neurons, composed of information-
processing units linked through nodes that information can pass between (LeCun et al., 2015). These 
models excel particularly at pattern recognition, facilitating systems that emulate human knowledge 
acquisition processes. An artificial neural network serves as a scientific exemplar attempting to mimic the 
functionalities of biological neural webs. The most straightforward component of an artificial neural 
network is an artificial neuron. The rules governing these systems fall into three basic categories: 
multiplication, summation, and activation. Within artificial neurons, each input undergoes separate 
weighting by multiplying its value against individual weights, representing the strength of its connection. 
The central mathematical operation quantities totally the weighted inputs alongside any bias value. The 
weighted inputs and bias then flow through an activation function at the neuron's output, also known as 
the transfer function (Krenker et al., 2011). (Fig.4).  

Figure 4: Working principle of an artificial neuron. 

 

Source: (Krenker et al., 2011) 

While the functioning principle and simple set of rules of artificial neurons is nothing distinct, the complete 
prospective and calculating power of these models bloom when we start interconnecting them into artificial 
neural networks (Krenker et al., 2011) (Fig. 5). The simple element that complexity can evolve out of several 
elementary and simple rules is the root behind these artificial neural networks. 
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Figure 5. Pattern of simple artificial neural network. 

 

Source: (Krenker et al., 2011) 

Recurrent Neural Networks (RNNs) 

The RNNs models are introduced here to capture some temporal sequences regarding how the brain 
processes time-dependent information (Hochreiter,1997). Moreover, its application in modeling memory 
dynamics makes it especially applicable for educational technologies that involve sequential understanding 
tasks. However, RNNs also work exceptionally well in tasks where data must be structured in a specific 
order and ordering affects output as they can maintain memory from previous calculations (Gao et al., 
2019). Unlike Feedforward neural networks, RNNs include loops that allow them to process information 
in cycles, enabling them to learn dependencies in sequential data. 

Recurrent neural networks involve giving the output from one step as input to another step, and they have 
only been able to keep track of the information from the previous input. This design makes it easy to use 
in ASAP (where future word predicting). RNNs are essentially defined by their hidden state (or memory 
state), which carries salient information from past inputs of the sequence. Recurrent neural networks 
(RNNs): With the usage of the same parameters through all the steps and across the inputs, the parameters 
required are less in comparison to the traditional neural networks. RNNs excel at sequential tasks due to 
this ability. Specifically, RNNs utilize the same network across the entire sequence, and store and transmit 
useful information when it is relevant, thus allowing them to learn temporal dependencies a power that 
traditional NNs lack. 

Figure 6: Basic RNN Architecture 

 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v4i4.6785


Journal of Ecohumanism 
 2025 

Volume: 4, No: 4, pp. 746 – 760 
ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 

https://ecohumanism.co.uk/joe/ecohumanism  
DOI: https://doi.org/10.62754/joe.v4i4.6785  

758 

 

Source: Sutskever, (2014).   

Feedforward Neural Networks(FNN) analyze data in one direction, moving from input to output, with no 
storage of information from the previous inputs. FNNs are one-way street from input to output This 
makes them more flexible for tasks which have independent inputs such as image classification. However, 
FNNs have limitation with sequential data as they do not have memory. This problem is solved with 
Recurrent Neural Networks (RNN) where we have loops because we can feed information from previous 
steps into the network. By passing the previous input into the next step, the RNN can retain the memory 
of the last input, allowing it to represent tasks that require a history. 

Fig: Recurrent Vs Feedforward networks 

 

 Source: Sutskever, (2014).   

Transformer Simulations and Attention Mechanisms 

Researcher Vaswani et al. (2017) recognize the revolutionary impact of transformer models in deep learning, 
which utilize self-attention methods to allow for parallelization and handling long-range dependencies. 
RNNs and transformers are very different in how they handle sequences, which makes them powerful for 
NLP tasks such as translation and summarization. The attention mechanism gives different weights to 
elements in the input from which elements are used to generate output at each step (Niu et al., 2021). 
However, transformers lie at the heart of models as varied as BERT and GPT, generating state-of-the-art 
performance in countless applications. 

Spiking Neural Networks (SNNs) 

Based the model on Spiking Neural Networks (SNN), which are biologically inspired models, and pass 
information via the same sparse pattern of spikes that neurons use in the brain to communicate and process 
knowledge. Unlike traditional neural networks, spiking neural networks (SNNs) perform computation via 
time-dependent spiking events which strive for energy efficiency and temporal dynamics and allow the 
implementation of SNNs on neuromorphic hardware and for applications such as sensory processing and 
robotics (Bouvier et al., 2019). 
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Modeling Neural Mechanisms to Enhance Learning and Memory 

Modeling neural mechanisms emphasizes imitating biological procedures such as synaptic plasticity and 
memory consolidation to advance learning in artificial systems (Tang et al., 2019). Moreover, Hebbian 
learning and spike-timing-dependent plasticity mimic neuronal interactions to enable adaptive learning; 
these models are pivotal in advancing neuromorphic computing and understanding memory systems in the 
brain (Rd, 2003). As a result, applications range from enhancing cognitive computing to advancing brain-
inspired AI for complex problem-solving. 

Predictive Coding 

Predictive coding was initially developed as a model of the sensory system, where the brain solves the 
problem of modeling distal causes of sensory input through a version of Bayesian inference. It assumes that 
the brain maintains active internal representations of the distal causes, which enable it to predict the sensory 
inputs (Clark, 2013). A comparison between predictions and sensory input yields a difference measure, 
which, if it is sufficiently large beyond the levels of expected statistical noise, will cause the internal model 
to update to predict sensory input in the impending. Predictive coding posits that the brain minimizes 
prediction errors (Friston, 2010). Similarly, deep learning models optimize loss functions to improve 
predictive accuracy, aligning with the brain’s optimization strategies. 

Hebbian Learning 

  A Hebbian theory describes synaptic connections strengthening as a result of the activity (Hebb, 2005). It 
has often been summarized with the phrase “cells that fire together wire together” and describes the 
association between correlated firing of neurons that leads to long-term potentiation. This principle forms 
the basis of current neural network training and learning and memory models (STDP), which are essential 
for understanding adaptive learning in biological and artificial systems (Eshraghian et al., 2023).  

Biologically Inspired Architectures 

Biologically inspired architectures closely resemble the structure and functioning of biological systems and 
the human brain to improve computing and problem-solving ability (Goertzel et al., 2010). Moreover, they 
operate within highly energy-efficient, adaptable, and real-time computing frameworks; have robotics, 
sensory processing, and cognitive computing applications, merging artificial intelligence with human 
natural brain function and general intelligence (Zhu et al., 2023). 
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Conclusion 

Deep learning and brain science to further enhance learning and memory in education. Such technologies 
can mimic synaptic plasticity, STDP, and hierarchical processing (leading to multi-scale learning) and offer 
personalized and adaptive teaching experiences. Hebbian learning and attention mechanisms are essential 
approaches in artificial intelligence to tackle the problem of knowledge storage, memory fine-tuning, and 
customized teaching applications. Moreover, they offer highly scalable architectures that drive energy-
efficient algorithms needed to give real-time feedback while enabling education to transcend diverse 
environments. This cross-functional strategy reinvented the education system and included continuous 
education as a part of one's life and taking cognizance of the diversity in cognition of the learners. Deep 
learning and neuroscience insights with advanced AI, this convergence between deep learning and brain 
science, can reshape education paradigms, fostering engagement, inclusivity, and sustainable learning 
outcomes accessible to the world. 
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