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Abstract  

In the dynamic energy sphere in the U.S., operational dependability of gas turbine engines becomes vital to the continuous power 
production and sustenance of the national grid. Peak and baseload power production, the mainstay of gas turbines, is exposed to high 
thermal, mechanical, and chemical stresses that lead to wear out of components over time. Traditionally, maintenance practices have 
either been reactive or time-based, based upon fixed intervals, which has led to premature replacement of components, or vice versa, 
undetected degradation leading to catastrophic failure. Such approaches carry high operating costs, lower turbine availability, and 
jeopardize plant safety. The central objective of this research is to build and test an AI-driven fault detection system to identify early 
signs of failure in gas turbine engines and apply it specifically to deployment within the energy sector of the U.S. Improving gas turbine 
performance is essential to raising the cost-effectiveness and sustainability of power production systems. The dataset used in this research 
entails high-resolution operational parameters gathered from different industrial gas turbines operating within U.S. energy facilities. 
Engine operational data includes multiple time-dependent measurements that monitor essential parameters like turbine temperature at 
the inlet and outlet and rotational speed, torque measurements alongside vibration levels and power output, fuel rate and intake pressure, 
and exhaust temperature and oil temperature. Real-time data acquisition from embedded sensor arrays allowed researchers to track 
turbine performance throughout changing operational states at sub-minute data points. A centralized time-stamping system maintains 
channel synchronization, thus allowing analysts to draw accurate conclusions about operational states throughout the recorded period. 
To support strong and interpretable fault detection, we utilized a variety of machine learning models, each chosen for its specific strength 
at discriminating operations from fault conditions in gas turbines. We used a multi-metric-based evaluation approach that combined 
statistical validity with operational applicability to assess each model's fault detection capability. Logistic Regression attained the highest 
accuracy, followed very closely by Random Forest. XG-Boost attained the lowest accuracy of all three algorithms. The use of AI-driven 
fault detection under predictive maintenance has the potential to revolutionize U.S. power plants using gas turbines as the primary 
source of electricity generation. In the fiercely competitive and heavily regulated environment of the U.S. energy industry, fault anticipation 
presents the key to competitive advantage. Using AI-based diagnostics reduces manual checks and simplifies the servicing process by 
prioritizing technician resources to confirmed at-risk components. AI-powered fault detection is critical to improving grid resilience within 
the U.S. energy infrastructure by assuring that peak-demand-balancing and grid-stabilizing gas turbines remain fault-free. 

Keywords: Predictive Maintenance, Gas Turbine Fault Detection, Artificial Intelligence, Machine Learning, U.S. Energy 
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Introduction 

Gas and steam turbines are instrumental elements in the production of electricity, each functioning on 
diverse thermodynamic principles and performing unique roles within power plants (Ahmed et al., 2025). 
The energy from combustion gases is transformed into mechanical energy by gas turbines. Air is 
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compressed, combined with gasoline, and then fired in a standard configuration. A generator is powered 
by the expansion of the ensuing high-pressure, high-temperature gases as they pass through turbine blades 
(Hasan, 2024). In this technique, combustion gases drive the turbine to generate energy, much like in a jet 
engine (U.S. Energy Information Administration, 2020). Gas turbines are prized for their quick startup times 
and adaptability, which make them ideal for supplying peak electrical demands. 

Steam turbines, on the other hand, use the energy of steam created by heating water to produce electricity. 
Numerous energy sources, such as nuclear power, fossil fuels, or renewable techniques like geothermal 
heating, can be used to heat water in a boiler (Barua et al., 2025). Turbine blades rotate and power a 
generator when the high-pressure steam generated is directed over them. Steam turbines account for almost 
80% of the world's electricity output, making this technique a mainstay of power generation (U.S. Energy 
Information Administration, 2020). Their capacity to function consistently over long periods makes them very 
effective for continuous, base-load electricity generation. 

According to Chouksey et al. (2025), gas turbine engines are central to the energy and industrial processes 
of the United States, specifically for generating electricity, peaking power plant operations, and industrial 
cogeneration processes. Gas turbine engines take chemical energy produced by burning fuel and transform 
it into mechanical energy, and finally into electric power, under maximum thermal conditions and high rates 
of rotation. As turbine blades are under continuous working strain, they remain vulnerable to component 
degradation, including blade fatigue, wear and tear to the bearings, combustion irregularities, and thermal 
creep. With the growing demand for clean, efficient, and competitive energy resources, maintaining uptime 
and the reliability of the turbine is of utmost importance. Throughout the country, unplanned turbine 
downtime has not only caused megawatt production losses but has even caused grid instabilities and 
revenue penalties, underlining the importance of smarter measurement and diagnostic tools (Chowdhury 
et al., 2025). 

Traditionally, U.S. gas turbine maintenance has been time-based interval or reactive, responding to failures 
after they have happened. Those approaches, which historically worked well during the relatively stationary 
energy demand patterns of the past, no longer align with the high-performance expectations of today's 
energy infrastructure (Abdelhamid et al., 2021). With the advancement of sensor technologies, there is real-
time data acquisition possible from all engine subsystems but no industry-aligned frameworks to take the 
data and convert it to usable insight. As such, failing to detect early fault conditions has the potential to 
lead to lengthy outages, unplanned shutdowns, and even catastrophic mechanical failure. This gap in 
operations underscores the immediate need for data-driven predictive fault detection systems using the 
strength of artificial intelligence and machine learning (Adebiyi & Habyarimana, 2025). 

Problem Statement 

Chelliah et al. (2023), reported that lack of effective AI-based diagnostics of the faults in gas turbine engines 
results in many losses for the energy and aviation industries in the USA related to operation, cost, and 
safety. Potential malfunctions that might go unnoticed include fouling of the compressor, wearing out of a 
turbine blade, or damaging effect of a foreign object; they lead to a dip in efficiency by as much as 15% 

thus exacerbating the fuel consumption and the emission of CO₂. For power plants, for instance, 
inefficiency means higher costs to maintain their operations, besides witnessing low energy production 
round the clock; others attribute misdiagnoses to unneeded maintenance time as well as part replacements. 
In aviation, weak fault detection reliability has implications for in-flight engine failure, hence risking lives, 
and suffering penalties from the relevant authorities while undertaking maintenance interventions that cost 
30 – 50% more than preventive ones (Fazle et al., 2023). Economically, the U.S. suffers billions of dollars 
in losses annually from unplanned downtime and reduced lifetime of turbines due to factors such as the 
misclassification of faults by AI systems, where high-pressure turbine tip clearance is misclassified 14.1% 
of the time. These shortcomings also hamper the development of accurate prognostic maintenance 
strategies, which continuously use expensive reactive models that contribute to $20 billion in loss of revenue 
annually to the industrial sector through unnecessary repairs and energy wastage (Gamal, 2025). 
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Hossain et al. (2025a), found that while advanced instrumentation is provided in today's gas turbine systems, 
current maintenance regimes fail to take full advantage of rich onboard telemetry through sensors. Most 
U.S. facilities still follow reactive approaches to fault management, treating faults after they happen, or 
calendar-based planned approaches underpinning fixed component lifetimes regardless of real-time 
condition information. Kamkar et al. (2024), added that these approaches are not sufficiently sensitive to 
detect early precursors to faults like transient vibration aberrations, micro-fractures in turbine blades, or 
inefficient combustor patterns, which typically occur before critical failures happen. In addition to this, the 
sheer amount and complexity of multivariate sensor information render manual diagnostic processes time-
consuming and prone to mistakes, leaving undetected many latent faults until they happen as expensive 
breakdowns. 

This gap between available information and actionable insight underlines the ineffectiveness of existing 
fault management strategies. In the energy sector within the U.S., turbines are typically located in mission-
critical applications like hospitals, data centers, and grid balancing facilities, where failure to identify early-
stage faults has far-reaching economic and societal consequences. Further, conventional SCADA and DCS 
systems are monolithic and cannot adapt to historical failures, with each failure being addressed 
independently of any broader asset health model (Koroteev & Tekic, 2021). In the absence of adaptive 
learning within maintenance strategies, the focus has to shift to AI-powered solutions with the capability 
to learn from past and current data independently to improve diagnostic accuracy continually. 

Research Objective 

The central objective of this research is to build and test an AI-driven fault detection system to identify 
early signs of failure in gas turbine engines and apply specifically to deployment within the energy sector of 
the U.S. This system will leverage historical failure records, high-resolution sensor data streams, and 
sophisticated machine learning techniques to detect turbine condition in real-time. It is intended to move 
from reactive or interval-based maintenance to predictive approaches that enable early alerting, inspection 
prioritization, and reducing unnecessary maintenance. By integrating predictive analytics into the working 
culture of power generation plants, this research aims to facilitate proactive decision-making to extend 
component life and allocate resources most effectively. 

To accomplish the research objective, the research will examine the applicability of supervised techniques 
such as Random Forests, XGB-Classifier, and Logistic Regression to the classification of known types of 
failures, and unsupervised techniques like Autoencoders and Isolation Forests to detect anomalies in 
new/rare conditions. It will train the models using multidimensional data from US-based energy utilities 
and test against known fault logs to determine the accuracy, recall, and overall predictive power of the 
models. Care will be taken to obtain low false alarm rates at the expense of high sensitivity to faults 
impacting critical operations. It will also have the ability to support real-time deployment with feedback 
loops to enable the system to update its predictive models as more operational data is obtained. 

Significance of the Study 

Improving gas turbine performance is essential to raising the cost-effectiveness and sustainability of power 
production systems. Modifications to gas turbine systems can reduce emissions and costs. For instance, 
putting creative AI into practice can result in a 1.2% drop in carbon dioxide emissions and an 8% cost 
reduction (Mohamed et al., 2024). Increases in turbine efficiency have a direct impact on lowering fuel 
consumption, operating expenses, and environmental impact. Targeted improvements have resulted in 
significant energy and emission savings in steam systems. In a mill context, for example, improvements to 
the steam system resulted in yearly energy savings of 75,276 GJ and a 13,002 metric ton reduction in carbon 
dioxide emissions. These upgrades reduce greenhouse gas emissions, which not only lowers energy costs 
but also supports worldwide sustainability goals (Lee, 2024). Gas turbines, which are essential to 
contemporary power plants, have significant benefits when properly optimized. 

Reza et al. (2025) highlighted that the introduction of AI-powered fault detection in gas turbines has the 
potential to transform the energy industry of the U.S. In today's environment, where the grid is being 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v4i4.6773


Journal of Ecohumanism 
 2025 

Volume: 4, No: 4, pp. 658 – 678 
ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 

https://ecohumanism.co.uk/joe/ecohumanism  
DOI: https://doi.org/10.62754/joe.v4i4.6773  

661 

 

decentralized and energy infrastructure is growing increasingly complex, the dependability of every unit is 
of utmost importance. Predictive fault detection using AI helps to lower the frequency of unplanned 
shutdowns, increases the lifespan of turbine components, and maximizes overhaul scheduling efficiency. 
This results in considerable cost savings in both the form of reduced initial investments and operations. 
This decrease in unforeseen turbine failure also reduces risk to humans and assets, helping to keep critical 
energy infrastructure running during peak load or emergencies. These improvements highlight how gas 
turbines can support environmental and economic objectives.  In addition, gas turbines are preferred in 
contemporary power plants because of their great efficiency and adaptability. They can achieve thermal 
efficiencies of up to 60% in combined configurations, where exhaust heat from the gas turbine is utilized 
to generate additional electricity through a steam turbine (Sharma et al., 2024). By maximizing energy 
extraction from fuel, this configuration lowers operating expenses and fuel consumption. 

Businesswise adoption of strategic artificial intelligence technologies promotes national goals dedicated to 
energy resilience and technological leadership. The combination of asset-level data analysis enables utilities 
to meet regulatory obligations better while advancing decarbonization initiatives and strengthening their 
capacity to respond to power grid disturbances (Shil et al, 2024). The application of machine learning to 
aging legacy assets creates a real opportunity to transform America's energy system while avoiding complete 
equipment replacement. The application of AI-based fault detection transcends predictive maintenance 
capabilities to form the essential foundation for developing a smarter, resilient energy grid system across 
the United States (Shovon et al., 2025). 

Literature Review 

Gas Turbine Operations and Fault Types 

Gas turbine engines, prevalent throughout the American power generation industry, are sophisticated 
assemblies combining thermodynamics and mechanics to deliver fuel energy as electric output. Gas turbine 
assemblies consist of rotating compressors, combustors, turbine stages, and accessory support apparatus 
like bearings, cooling apparatus, and control apparatus. Because of the hostile environments—the high 
temperatures, acceleration rates, and steady-state load fluctuations—gas turbines are susceptible to various 
mechanical and thermal failures (Sumon et al., 2024). Some typical defects include overheating due to 
inefficient cooling or excess fuel flow, blade damage from foreign object debris (FOD) or fatigue crack 
propagation, and burning anomalies from fuel-air imbalances or nozzle degradation. Each fault, unless 
identified early, may propagate to extreme damage, forced outage, or engine failure (Abdelhamid et al., 
2021). 

The industry has recorded, over the years, various fault types ranging from vibration irregularities in the 
rotors and the bearings to aberrant temperature profiles in the exhaust gas temperature (EGT) areas. Blade 
rotor rubbing, compressor surge, fuel nozzle blockage, and ignition instabilities are all well-documented 
faults lowering turbine performance and reliability. Often, such faults take the form of slight changes in 
sensor signatures, such as minute vibration amplitude increases or acoustic patterns divergence—easily 
overlooked by conventional monitoring tools (Adebiyi & Habyarimana, 2025). It is difficult, due to the 
multi-modal nature of turbine telemetry data spanning mechanical, thermal, and acoustic regimes, to 
identify and isolate fault causes without sophisticated analytic tools. It is therefore very important to 
understand these fault mechanisms to develop an AI system with the capability to distinguish between 
normal and aberrant behavior with high reliability (Ahmed et al., 2025). 

 Conventional versus Predictive Maintenance 

Barua et al. (2025) posited that traditional U.S. gas turbine industry maintenance methods have mostly been 
schedule- or reactive, depending on predefined operational cycles or human inspection to dictate the 
undertaking of maintenance. OEM-recommended time-based schedules—e.g., following a certain number 
of operating hours or starts—lie at the root of time-based maintenance, irrespective of the true wear status 
of the turbine components. As much as some standardization is achieved with the practice, there is likely 
to be both over-maintenance (replacing still-working components) and under-maintenance (overlooking 
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hidden problems), both economically suboptimal and potentially operationally risky. Chelliah et al. (2023) 
contend that manual inspection and technician-level diagnostics are contingent to some extent on human 
judgment, specifically any reliance on subjective sign reading from noise, smell, or vibration aberrations. In 
the high-pressure environment of utility power plant operations, inconsistencies here will have potentially 
hazardous implications. 

In comparison, predictive maintenance seeks to monitor the health of the equipment in real-time and 
initiate repairs according to actual degradation patterns instead of using random time intervals. It entails 
ongoing sensor data acquisition and sophisticated analytics to predict the remaining useful life of 
components. Yet, even with sensor technologies at hand, predictive maintenance has been inconsistent, 
mainly because interpreting the high-dimensional sensor data is complex (Agbaji, 2021). Most legacy turbine 
systems do not have the computational capabilities to work with the data, and tried-and-trusted signal 
processing is inadequate to detect nonlinear fault patterns. Increased demands for operating efficiency, 
coupled with mounting maintenance costs, have spurred the move to predictive maintenance systems based 
on artificial intelligence to constantly learn from and adapt to changed turbine behaviors (Chowdhury et 
al., 2024). 

 AI in Industrial Fault Detection  

Artificial intelligence, specifically machine learning, has been a revolutionary solution to industrial fault 
detection for many different types of mechanical systems, such as compressors, turbines, and rotary 
machinery. Classification models, such as Support Vector Machines (SVM), Decision Trees, Random 
Forests, and Artificial Neural Networks (ANNs), have been utilized in the last few years to examine past 
fault data and detect precursors to faults (Rahman et al., 2025). These classification algorithms are very 
good at detecting patterns in large datasets with many input dimensions, especially when they are well-
trained by labeled fault patterns (Chouksey et al., 2025). Supervised learning methods have been very useful 
where data sets have rich annotations of failure modes, such that they allow the system to distinguish with 
high confidence between good and bad conditions. In addition, dimensionality-reducing feature extraction 
methods like Principal Component Analysis (PCA) and Fast Fourier Transform (FFT) are widely used to 
provide useful indicators of turbine anomalies while simplifying data (Fazle et al., 2023). 

Unsupervised methods, like K-Means Clustering, Autoencoders, and Isolation Forests, are increasingly 
applied to anomaly detection in scenarios where labeled data is sparse or does not exist. They can identify 
the "normal" behavior of the turbine and alert to abnormalities signaling early faults. Deep learning 
methods, Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks are 
also finding prominence due to their ability to represent temporal as well as spatial relationships in time-
series sensor data (Gamal, 2025). Blended approaches applying both supervised and unsupervised 
techniques, combining the strengths of both schools, provide better fault detection accuracy. Yet, although 
high predictive accuracy is shown in lab trials in the literature, deployment in real-world, high-capacity 
conditions like U.S. energy utilities is rare due to the limitations of scalability and interpretability (Gazi et 
al., 2025). 

Gaps in Current Research 

Notwithstanding the advancement of AI-powered fault detection techniques, there is still a wide gap in the 
research area of using such models for U.S.-domain industrial data, with specific reference to utility-grade 
gas turbine datasets. A majority of studies from the literature employ general-purpose datasets from 
controlled setting environments, under which conditions noise, variability, and ambient stresses cannot 
match the reality of American power plants. One consequence is that the performance estimates in 
academia are far from being portable to real-world scenarios (Hasan, 2024). There is also no comparative 
literature addressing the performance of various classification algorithms versus standard metrics from U.S. 
turbine data. Without comparative studies, utility operators have no guidelines to choose the most suitable 
model to fit their needs. An equally critical gap is the integration of AI systems into current maintenance 
processes and control systems employed by U.S. utilities (Hossain et al., 2024). 
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 In isolation, most AI models are constructed, whereas constraints of deployment like data latency, cyber-
security, and operator interpretability receive scant consideration. In addition, there has been minimal effort 
to evaluate the adaptability of the model to variations of the turbine by manufacturer, design class, type of 
fuel, or load profile (Shil et al., 2024). The heterogeneity of the U.S. fleet of gas turbines—from various 
legacy systems installed during the 1980s to advanced, high-efficiency units—requires modeling methods 
tailored to address both physical and operational diversity. Future studies must cross this implementation 
gap by creating standardized evaluation protocols and hybrid AI architectures known to be resilient, 
scalable, and interpretable within the American energy infrastructure context. 

Data Collection and Preprocessing 

Dataset Overview 

The dataset used in this research entails high-resolution operational parameters gathered from different 
industrial gas turbines operating within U.S. energy facilities. Engine operational data includes multiple 
time-dependent measurements that monitor essential parameters like turbine temperature at the inlet and 
outlet and rotational speed, torque measurements alongside vibration levels and power output, fuel rate and 
intake pressure, and exhaust temperature and oil temperature. Real-time data acquisition from embedded 
sensor arrays allowed researchers to track turbine performance throughout changing operational states at 
sub-minute data points. A centralized time-stamping system maintains channel synchronization, thus 
allowing analysts to draw accurate conclusions about operational states throughout the recorded period. 
Supervised machine learning models can receive training and validation through this dataset, which includes 
both normal operating intervals together with fault-labeled intervals. The data underwent strong 
preprocessing steps such as anomaly removal alongside missing value completion and normalization 
procedures before moving onto analytical modeling. 

Dataset Description 

S/No   Column Name Description 

001. Temperature (°C)  Engine Internal temperature  

002. RPM Revolutions per Minute 

003. Torque (Nm) Torque Output 

004. Vibrations(mm/s) Vibration level 

005. Power Output (MW) Power generated 

006. Fuel Flow Rate (kg/s) Fuel Consumption 

007. Air Pressure (kPa) Air intake pressure 

008. Exhaust Gas Temperature (°C) Exhaust Output Temperature 

009. Oil Temperature (°C)  Oil System Temperature 

010. Fault Target Variable (0= No Fault, 1= Fault 

Preprocessing Steps 

As a dataset to support fault detection in gas turbines using AI, we went through various preprocessing 
steps to attain data quality and readiness for model development. Firstly, Missing values due to sensor 
failures or transmission latency were addressed through both short-term forward filling and interpolation 
for continuous-time signals, while longer gaps were flagged and omitted from model training. Secondly, 
anomalies like sensor spikes or flatline readings were detected using statistical criteria like Z-scores and 
domain-specific rules, and corrected or eliminated. In addition to being mostly composed of numerical 
attributes, any categorical fields like turbine identification or operation mode were label-encoded to align 
with machine learning processes. Thirdly, features were further scaled through Min-Max normalization to 
confine all values within a uniform range, facilitating gradient-based model convergence. Fourthly, we 
further went through correlation analysis to detect multicollinearity in the features, which assisted in 
selecting the feature set and reducing dimensionality. Finally, exploratory data analysis comprised plots for 
time series, pairwise scatter matrices, and heatmaps to represent operational trends and catch early fault 
behavior indicators, to establish the proper predictive modeling ground. 
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Exploratory Data Analysis (EDA) 

Exploratory data analysis (EDA) is the preliminary phase in the research process that entails statistical and 
visual exploration of a dataset to identify patterns, identify anomalies, test hypotheses, and cross-validate 
assumptions before the commencement of formal modeling. In the case of artificial intelligence-enabled 
fault detection for gas turbines, EDA is pivotal to learning about the behavior of operational parameters 
like temperature, RPM, torque, and vibrations both in normal and fault conditions. With techniques such 
as time-series plots, correlation heatmaps, distribution plots, and dimensionality reduction methods like 
PCA, EDA helps researchers recognize correlation amongst features, evaluate data quality, and discover 
undercurrent trends or inconsistencies potentially impacting model performance. It gives the insight needed 
to influence preprocessing steps, feature engineering, and selection of suitable machine learning algorithms, 
eventually informing the creation of more accurate and interpretable predictive models. 

a) Fault Class Distribution 

The analyst implemented a strategic code snippet, intending to plot the distribution of one 'Fault' class 
within the Data Frame df. The executed code line begins by finding the counts for each unique value under 
the 'Fault' column using value_counts() and assigning it to the fault_counts variable. It then plots the counts 
of each fault class using the seaborn library (sns), with counts of each fault type (assuming 'Fault' has 
categorical data for various fault types, probably 0 for 'No Fault' and 1 for 'Fault' as is shown by the x-
label). Successively, it adds a title, axis labels, and text annotations above every bar with the exact count. It 
lastly shows the plot and prints raw counts of every fault type to the terminal for numerical checking. 

Output: 

 

Figure 1: Displays Fault Class Distribution 

The chart above is a visual representation that showcases the number distribution between the 'No Fault' 
class counts (represented by the dark teal bar) and the 'Fault' class counts (represented by the vibrant green 
bar). The Fault class distribution features 0 as No-Fault and 1 as Fault categories. The dark teal coloring of 
a tall left bar shows that 'No Fault' occurs 961 times across the dataset. The bar measuring Fault displays 
425 occurrences of 'Fault' in addition to the other categories. The 'No Fault' category dominates the 'Fault' 
class distribution as the chart shows two bars representing 961 'No Fault' examples compared to 425 'Fault' 
examples. 

b) Portrays Feature Correlation Heatmap 

Besides, the analyst executed code fragments to produce a correlation heatmap and represent the 
interactions among various features in the Data Frame df. The code script first sets the plot figure size. It 
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then computes the pairwise correlation of all columns of the Data Frame with the .corr() method and stores 
the resulting correlation matrix in the variable correlation. Next, it employs the heatmap function from the 
seaborn library to plot a representation of the matrix. The parameter cmap gives the color scheme as 'cool 
warm', annot=True to include the correlation values in each cell, fmt=".2f" to format the annotations to 
two decimal places, and linewidths=0.5 to include the cells' separate lines. It finally adds a title to the 
heatmap and plots it using plt.show(). This plot makes it easy to identify positive and negative relationships 
among the features, with the intensity of the color symbolizing the strength of the relationship. 

Output: 

 

Figure 2: Portrays Feature Correlation Heatmap 

The Correlation Heatmap presents pairwise correlations among ten various features: Temperature (°C), 
RPM, Torque (Nm), Vibrations (mm/s), Power Output (MW), Fuel Flow Rate (kg/s), Air Pressure (kPa), 
Exhaust Gas Temperature (°C), Oil Temperature (°C), and Fault. The color intensity and numerical values 
in each cell represent the strength and sign of the linear correlation. For example, the diagonal represents 
the perfect positive correlation of 1.00 between each feature with itself. Interestingly, there are relatively 
weak linear correlations among most feature pairs, with correlation coefficients typically near zero. The 
strongest positive correlation is seen to be 0.99 between Power Output (MW) and Fuel Flow Rate (kg/s), 
although the exact value is not displayed but understood from a very strong red, which implies that as the 
power output rises, fuel intake will similarly tend to increase. In contrast, the strongest negative correlation 
is around -0.07 between Temperature (°C) and Fault, with a very slight trend for fault likelihood to decrease 
as the temperature rises, although again the correlation is weak. In general, the heatmap implies that the 
features have mostly independent linear relationships with one another. 

c) Feature Distribution 

Moreover, we deployed a relevant code script to perform numerical feature data distribution with plots for 
Data Frame df's 'Fault' group categorization. The programmer used pd.melt() to transform the Data Frame 
to a long form where 'Value' has aggregated features and 'Feature' is used to monitor original feature 
identities along with fault labels. The code script uses Seaborn-Facet-Grid for constructing subplots 
through its plot workflow. Each subplot from the subplot array displays a different feature distribution as 
decided by the col='Feature' directive while having up to 3 columns (col-wrap=3). Besides, each subplot 
has its own separate axes due to the omission of the sharex=False and sharey=False parameters. The code 
line plots histograms from the 'Value' data using sns. His plot overlays kernel density estimates (kde=True) 
in 'steel-blue' bars for every subplot according to the 'Feature' column. The figure gets its overall title, then 
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the layout is adjusted for overlapping elements before the plot is shown. Through the ideal method of 
visualization, researchers viewed how different features are dispersed at different Fault levels as shown 
below: 

Output: 

 

Figure 3: Showcases Feature Distribution 

The distribution plot above shows the histogram and kernel density estimate of each of the nine features: 
Temperature (°C), RPM, Torque (Nm), Vibrations (mm/s), Power Output (MW), Fuel Flow Rate (kg/s), 
Air Pressure (kPa), Exhaust Gas Temperature (°C), and Oil Temperature (°C). Each subplot is the 
distribution of one feature. Most of the features, like Temperature, RPM, Torque, Power Output, Fuel 
Flow Rate, Air Pressure, Exhaust Gas Temperature, and Oil Temperature, have approximately normally 
distributed data, as noted by the smooth histogram shapes, and help smooth kernel density estimate curve 
superimposed along with them. Vibrations (mm/s), although unimodal, are slightly skewed to the right. All 
the distributions have different central tendencies and spreads, like RPM centering at 15000 and 
Temperature at 850. The y-axis always shows the count for each value range of every feature, so you could 
compare by eye the frequency within each feature's distribution of different values. 

d) Pairwise Feature Relationship Colored by Fault 

Furthermore, we deployed relevant code lines to produce a pairwise scatter plot matrix of selected features 
from the Data Frame df: 'Temperature (°C)', 'RPM', 'Torque (Nm)', 'Vibrations (mm/s)', and 'Fault'. It 
applies to seaborn.pairplot() function to plot all the numerical features against each other in a grid of plots. 
The hue='Fault' parameter colors the scatter plot points according to the values within the 'Fault' column, 
enabling possible relationships to be visualized between the features and the fault status. It uses the 
palette='viridis' parameter to define the scheme to utilize for the variety of 'Fault' classes. The plot's diagonal 
will include kernel density estimates of each feature (diag_kind='kde') to inform about the shapes of their 
distributions. The figure is finally titled and displayed. 
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Output: 

 

Figure 4: Pairwise Feature Relationship Colored by Fault 

The chart shows scatter plots linking four chosen features that characterize their relationships according to 
fault conditions. The scatter plot presents Temperature (°C), RPM, Torque (Nm), and Vibrations (mm/s) 
values as data points that receive color treatment based on the 'Fault' status field (0 and 1). Each feature 
shows its kernel density estimate through diagonal plots, whereas the 'Fault' status divides the data into 
separate categories. A lack of linear relationship becomes evident in the widespread of points throughout 
the scatter plots between these features. The Fault-associated color scheme enables researchers to visually 
assess whether fault events cluster separately or not among the feature combinations. The regions occupied 
by 'Fault' and 'Non-fault' cases appear equivalent in the feature space of the Temperature vs. RPM scatter 
plot. All feature distributions represented by kernel density estimates show overlapping densities for fault 
categories and non-fault cases throughout each of the four individual variables, which indicates that single 
features alone cannot distinguish between faulty and non-faulty behavior. 

e) Radar Chart: Mean Comparison 

Moreover, we applied a code block intending to plot the mean values of various features across instances 
where 'Fault' is 0 ('No Fault') vs where 'Fault' is 1 ('Fault'). It begins by selecting numerical features from 
the Data Frame df (not including the 'Fault' column itself) and computing the mean of the features for the 
two 'Fault' levels independently, storing the results in means-no-fault and means-fault. It next prepares data 
for the radar plot by specifying the feature names, calculating angles for each axis of the polar plot, and 
extracting the mean values into lists. It then plots the data in a polar subplot using a line for each set of 
mean feature values--one for 'No Fault' in blue, the other for 'Fault' in red--with filled areas to bring out 
the differences. It then sets the theta grid, direction, and offset, adds title and legend and displays the 
resulting radar plot, which visualizes the average feature profile difference across the two fault classes. 
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Output: 

 

Figure 5: Radar Chart: Mean Comparison 

The radar chart above compares the average values of eight features for 'No Fault' (blue line) and 'Fault' 
(red line) conditions. The data points from 'Fault' cases show increased measurement levels of RPM, 
Torque, Vibrations, Power Output, Fuel Flow Rate, and Exhaust Gas Temperature over 'No Fault' cases, 
resulting in larger red zone areas on the chart axes. The average readings of Temperature and Oil 
Temperature seem slightly lower for 'Fault' situations. A comparison of RPM, Torque, and Power Output 
reveals the most significant variations, which indicates these variables may articulate faults within the 
system. Air Pressure maintains similar average readings regardless of 'Fault' or 'No Fault' status. The radar 
chart demonstrates prominently that operational parameters' mean values exhibit different patterns between 
faulted and fault-free conditions. 

Methodology 

Feature Engineering 

Feature engineering was a critical process of turning raw gas turbine telemetry into rich input for machine 
learning models. Whereas the original dataset provided key real-time parameters like temperature, torque, 
fuel flow, and RPM, derived features were constructed to identify the dynamic relationships among them 
to provide richer insight into turbine conditions. For instance, temperature differentials across inlet and 
exhaust sensors were calculated to represent thermal efficiency and combustion anomalies. Load ratios—
operationally, the ratio of torque to RPM, and power output to fuel flow—were similarly introduced to 
examine mechanical performance at differing levels of load. Engineered features like these tend to serve as 
early warnings for mechanical degradation or aberrant combustion behavior, which may not be evident in 
raw sensor measurements. Lag features derived from time and rolling statistics, like moving averages and 
standard deviation, were also calculated to enable the detection of transient faults and temporal anomalies, 
further bringing predictive enrichment to the dataset. 

To mitigate the high dimensionality due to raw and derived features, the optional application of Principal 
Component Analysis (PCA) was employed. PCA aided in the identification of the primary modes of 
variance in sensor data, facilitating dimensionality reduction without compromising the original dataset's 
primary structure. This method was favored particularly when training computationally burdensome models 
or eliminating collinear features with the potential to bias learning algorithms. Notably, whether to use PCA 
was model-specific; linear modeling techniques such as logistic regression appreciated the lower 
dimensionality and decorrelated features, whereas tree-based models such as Random Forest and XGBoost, 
which naturally deal with multicollinearity and feature interactions, performed better using the full feature 
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space. In general, the feature engineering process seeks to optimize model interpretability and accuracy by 
creating a model of turbine health that is rich in data and informed by the domain. 

 Machine Learning Models 

To support strong and interpretable fault detection, we utilized a variety of machine learning models, each 
chosen for its specific strength at discriminating operations from fault conditions in gas turbines. Our 
baseline model was Logistic Regression due to its transparency and simplicity. This linear classification 
algorithm posits a linear relationship between input attributes and fault probability, and therefore it's simple 
to utilize for initial evaluations and feature importance. Even though logistic regression has limitations in 
modeling complicated, nonlinear fault behaviors, it provides insightful baselines for accuracy and 
computational cost. In our work, we tested it using raw and normalized attributes and regularization to 
avoid overfitting. Logistic regression coefficients were also interpreted to specify the functional parameters 
most associated with turbine faults, to confirm domain assumptions. 

We built the implementation of the Random Forest Classifier as an ensemble learning technique that uses 
several decision trees to analyze non-linear patterns and high-order feature interplay. The training process 
of each forest tree uses bootstrapped data subsets, which enable random feature split selection to generate 
numerous decision paths through the data space. Random Forest demonstrates superior capabilities in 
dealing with sensor noise while extracting small-scale relationships between variables that signal initial 
system faults through temperature, vibration, and fuel flow data. The model's ability to rank features 
automatically delivered information about which parameters primarily affected fault detection. We 
integrated the XG-Boost Classifier as a gradient-boosting model that achieves outstanding performance 
results with structured data formats identical to those produced by turbine systems. XG-Boost constructs 
decision trees progressively, which systematically corrects previous trees' errors, producing highly precise 
and robust prediction models. The features of XG-Boost, which handle missing data combined with its 
regularization abilities and parallel optimization properties, fit complex fault classification workloads in real-
world operations. 

Model Evaluation 

We used a multi-metric-based evaluation approach that combined statistical validity with operational 
applicability to assess each model's fault detection capability. The model performance indicator used 
accuracy, which presented the ratio between accurate predictions to total predictions to provide a brief 
overview of general performance metrics. The propensity of real-world fault detection tasks to show an 
imbalance between normal and fault conditions highlights the value of using Precision and Recall measures 
to gain more detailed assessment outcomes. Precision determined the number of legitimate fault cases 
within the predicted results to prevent unnecessary and expensive false-positive alerts. The detection of 
actual fault events stands as the essential purpose of recall measurement to establish how well the system 
identifies significant issues.  

We utilized the Receiver Operating Characteristic - Area Under Curve (ROC-AUC) to evaluate model 
discrimination between faulty and non-faulty states across multiple classification thresholds. The 
performance of discrimination in model identification increases proportionally with the ROC-AUC value, 
thus playing a major role in specifying alert thresholds for turbine monitoring. The generated Confusion 
Matrices presented model performance metrics through counts of true positives and negatives and false 
positives and negatives. Through this method, we gained knowledge about how each algorithm's failing 
mechanisms appeared under multiple operational conditions. A standard approach called k-fold cross-
validation distributes the data into several remaining sections using either 5 or 10 splits to check model 
performance on unseen datasets. We established model predictive accuracy across diverse turbine 
operational scenarios to ensure their readiness for high-stakes deployment within U.S. energy sector 
operational environments. 
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Results and Analysis 

Model Performance  

a) Logistic Regression Modelling 

The Python code uses logistic regression to develop a classification system. The code starts by importing 
essential classes: Logistic Regression from sklearn-linear-model and classification report, and accuracy score 
from sklearn. Metrics. The source code implements Logistic Regression from sklearn-linear-model to create 
the model before using the classification report and accuracy score from sklearn. Metrics for assessment. 
The code creates a Logistic Regression model which performs a maximum of 1000 iterations with a set 
random-state for consistent results. The training process occurs with. Fit () applying X-train-scaled features 
together with y-train labels. The prediction process for X-test-scaled features takes place through the 
models. Predict () application which generates results stored as y_pred_logreg. The code finalizes 
performance analysis through a classification report that displays precision, recall, and F1-score alongside 
support for each category and outputs an overall test accuracy score. 

Output: 

Table 1: Logistic Regression Classification Report 

Logistic Regression Results: 

 

              precision    recall  f1-score   support 

 

           0       0.69      0.99      0.82       193 

           1       0.00      0.00      0.00        85 

 

    accuracy                           0.69       278 

   macro avg       0.35      0.50      0.41       278 

weighted avg       0.48      0.69      0.57       278 

 

✅ Accuracy: 0.6906 

A substantial performance gap exists in the results of Logistic Regression between instances belonging to 
classes 0 and 1. The model's performance for class 0 shows precision at 0.69 but a remarkable recall rate of 
0.99 along with an F1-score of 0.82. These metrics indicate that the model identifies nearly all actual class 
0 instances correctly whereas 31% of its predicted class 0 results belong to class 1. The model proved 
incapable of identifying any observations as part of class 1 because its precision, recall, and F1-score values 
all came out to 0.00. The model performed entirely incorrectly on all of the 85 actual class 1 instances 
(support). Overall model success reaches 0.6906 because of effective classification in detecting the most 
common class (class 0 with 193 existing instances). The poor prediction performance for class 1 (cost 1) is 
demonstrated by the macro average F1-score score of 0.41 along with the weighted average F1-score of 
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0.57. The current state of Logistic Regression demonstrates limited effectiveness in forecasting 'Fault' class 
occurrences which are represented by 1. 

b) Random Forest Modelling 

The implemented code script runs a Random Forest Classifier operation for categorization needs. The 
Random Forest Classifier implementation starts with importing the Random-Forest-Classifier, which exists 
in the sklearn-ensemble module, and the classification report, along with the accuracy score from sklearn-
metrics for assessment purposes. An initial model of a Random Forest Classifier receives 100 decision trees 
known as estimators, together with a defined random-state value to support model reproducibility. Using 
the X-train-scaled training features together with y-train labels, the model receives training with them. fit() 
method. During prediction time, the trained Random Forest model makes predictions on the scaled test 
features (X-test-scaled) through the. Predict () method, which saves the resulting predictions in y_pred_rf. 
The code displays a classification report for model performance which contains precision, recall, and F1-
score and support statistics, and overall accuracy measurements from the test data. 

Output: 

Table 2: Random Forest Classification 

Random Forest Results: 

 

              precision    recall  f1-score   support 

 

           0       0.69      0.97      0.81       193 

           1       0.17      0.01      0.02        85 

 

    accuracy                           0.68       278 

   macro avg       0.43      0.49      0.42       278 

weighted avg       0.53      0.68      0.57       278 

 

✅ Accuracy: 0.6799 

The Random Forest Classifier output demonstrates the same trend as the Logistic Regression model, where 
there is good performance in class 0 and bad performance in class 1. For class 0, the precision is 0.69, the 
recall is 0.97, and the F1-score is 0.81, suggesting good capability to detect the non-faulty instances with 
relatively low misclassification of faulty instances as non-faulty. For class 1, the precision is only 0.17, the 
recall is very low at 0.01, and the derived F1-score is 0.02. This demonstrates the Random Forest model 
has great difficulty identifying the class 1 instances (faults), where only a very small proportion of actual 
faults are correctly picked out, and most of its positive class 1 predictions are incorrect. Overall accuracy is 
0.6799, largely due to the model's success in detecting the majority class (class 0, which has 193 instances). 
The macro average F1-score is 0.42, and the weighted average F1-score is 0.57, both again reflecting the 
very large difference in performance across the classes, where the model is much worse at identifying the 
minority class (class 1, which has 85 instances). 
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c) XGB-Classifier Modelling 

The Python code uses the XGB-Classifier for classification. It begins by importing the XGB-Classifier from 
the xg-boost module and the accuracy score and classification report from sklearn-metrics for model 
evaluation. An XGB-Classifier model is created with the setting use-label-encoder=False to prevent a 
warning, eval_metric='logloss' to define the measurement under which the model is to be evaluated during 
training (though not utilized for early stopping in this case), and with a fixed random-state to ensure 
execution reproducibility. The model is fit to the scaled training data and training labels (X-train-scaled, y-
train) using the .fit() method. Following training, it makes predictions from the scaled test data using the 
.predict() method, storing the output in y_pred_xgb. Subsequently, the performance of the model is 
assessed by printing out the classification report, detailing precision, recall, F1-score, and support for each 
class, along with the test set accuracy score. 

Output: 

Table 3: XG-Boost Classification Report 

XGBoost Results: 

 

              precision    recall  f1-score   support 

 

           0       0.69      0.83      0.75       193 

           1       0.30      0.16      0.21        85 

 

    accuracy                           0.63       278 

   macro avg       0.50      0.50      0.48       278 

weighted avg       0.57      0.63      0.59       278 

 

✅ Accuracy: 0.6259 

The XG-Boost Classifier output provides better detection of the minority class (class 1, i.e., fault) than the 
Logistic Regression and Random Forest cases, although still lower in overall accuracy. For class 0, there is 
0.69 precision, 0.83 recall, and 0.75 F1 score. For class 1, the precision is now 0.30, recall is 0.16, and F1-
score is 0.21, reflecting better detection of fault occurrences than the earlier classifier models, although still 
with quite high false positive rates and low detection rates for actual faults. Overall accuracy is 0.6259 for 
the XG-Boost model, slightly lower than the case for the other two models. The macro average F1-score 
is 0.48, and the weighted average F1-score is 0.59, both of which indicate better balance in performance 
across the two classes than the earlier classifier results, but with potential for further improvements, 
specifically to detect the fault class better. 

Fault Detection Insights 

The results highlight two key aspects for improving system reliability and safety. Firstly, there's a focus on 
the detection of rare yet critical failure patterns, suggesting a need for sophisticated anomaly detection 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v4i4.6773


Journal of Ecohumanism 
 2025 

Volume: 4, No: 4, pp. 658 – 678 
ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 

https://ecohumanism.co.uk/joe/ecohumanism  
DOI: https://doi.org/10.62754/joe.v4i4.6773  

673 

 

techniques capable of identifying infrequent deviations from normal behavior that could lead to significant 
consequences. Secondly, the insight points to the potential for real-time prediction of faults by leveraging 
simulation-based test data. This implies that models trained on simulated failure scenarios could be 
deployed to predict impending faults in real-world operations, enabling proactive maintenance and 
preventing costly downtime or hazardous situations. Both insights emphasize the importance of early and 
accurate fault detection for mitigating risks associated with system failures. 

Comparison of All Models 

The computed code piece compares the performances of three classification algorithms - Logistic 
Regression, Random Forest, and XG-Boost - using accuracy scores. It declares lists to hold the model 
names and corresponding accuracies. It computes each model's accuracy by comparing its test set 
predictions (X_-test_-scaled) against the test labels (y-test) using the accuracy score function and adds these 
values to the accuracy list. A Pandas Data Frame called comparison is built to display the model names and 
corresponding accuracies in a table form. This Data Frame is sorted in descending order according to the 
accuracy values. Finally, the code displays the sorted comparison table on the screen and plots a bar chart 
representing the accuracy of each model for simple visual comparison. 

Output: 

 

Figure 6: Model Accuracy Comparison 

The bar chart above compares the overall accuracy rates of three classification algorithms: Logistic 
Regression, Random Forest, and XG-Boost. At about 0.6965, Logistic Regression attained the highest 
accuracy, followed very closely by Random Forest at about 0.6799. XG-Boost attained the lowest accuracy 
of all three at about 0.6259. This is to say that Logistic Regression performed only slightly better than 
Random Forest and significantly better than XG-Boost at correctly identifying instances both in the 'No 
Fault' and the 'Fault' classes in the test data, even if the relatively low accuracy rates by all models indicate 
room for greater accuracy improvement or the inherent challenge in precisely identifying the 'Fault' 
condition given the provided feature set. 

Applications within the U.S. Energy Industry 

 Predictive Maintenance for Power Plants 

The use of AI-driven fault detection under predictive maintenance has the potential to revolutionize U.S. 
power plants using gas turbines as the primary source of electricity generation. Conventional reactive or 
scheduled maintenance tends to create inefficient resource utilization, excessive replacement of equipment, 
and unplanned shutdowns, resulting in interrupted power delivery. With machine learning algorithms using 
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real-time and historical sensor data, operators can transition to condition-based maintenance approaches. 
This enables early detection of abnormalities like combustion inefficiencies, wear and tear of bearings, or 
upcoming blade failure, far before they cause catastrophic failure. Predictive models can predict the 
Remaining Useful Life (RUL) of assets and rank maintenance decisions, enabling plant managers to 
schedule repairs during low-demand times, manage spare part inventory, and save significant downtime 
costs. 

In the fiercely competitive and heavily regulated environment of the U.S. energy industry, fault anticipation 
presents the key to competitive advantage. Using AI-based diagnostics reduces manual checks and 
simplifies the servicing process by prioritizing technician resources to confirmed at-risk components. In 
addition to lowering labor costs, it also increases the life cycle of valuable assets. Predictive maintenance 
further boosts energy efficiency by ensuring peak performance of the turbine, resulting in lower fuel 
consumption and lower emissions. The overall effect is reduced both OPEX and CAPEX, helping utility 
operators in the continuous quest to update infrastructure and achieve sustainability targets. In a sector 
where uptime and reliability are not negotiable, these AI technologies represent a strategic tool to drive 
maximum output while reducing risk. 

 Improving Grid Reliability 

AI-powered fault detection is critical to improving grid resilience within the U.S. energy infrastructure by 
assuring that peak-demand-balancing and grid-stabilizing gas turbines remain fault-free. As variable 
resources like wind and solar enter the grid in growing increments, gas turbines are critical backup resources 
that should be poised to react instantaneously to swings in grid demand. Machine learning-enabled early 
detection of mechanical or thermal faults means all such turbines can go from inactive to active, or ramp 
up, without fear of failure. This proactive capability precludes the risk of blackout or frequency imbalance 
caused by maintaining the health and responsiveness of the generating fleet. 

Moreover, AI-backed reliability helps limit the ripple effect of failures in interconnected systems in densely 
populated urban centers or industrialized districts with high power demand. Fault-conscious scheduling 
provides grid managers with the additional predictability needed to better dispatch and manage loads. With 
AI fault detection integrated into energy management software, utility providers will have data-driven 
approaches to manage asset availability and performance. This enhances the grid's resilience to both internal 
equipment failures and external threats, like extreme weather conditions or cyber-attacks. With the ongoing 
development of the U.S. grid toward its more digitized and dispersed infrastructure, predictive maintenance 
driven by AI will serve as the bedrock technology to ensure grid stability and readiness. 

Compliance and Safety 

Regulatory compliance and safety are of utmost importance in the use of gas turbine engines in the 
American energy industry, where strict federal and state regulations dictate equipment efficiency, emissions, 
and personnel safety. Fault detection using artificial intelligence ensures safer operations by detecting 
mechanical wear or system abnormalities before it progressing to critical failures like fires, explosions, or 
toxic emissions. Monitoring of parameters like oil temperature, vibration frequencies, and exhaust gas 
composition in real time enables AI to detect anomalies that presage possible safety violations, leaving the 
operators sufficient time to act. In addition to safeguarding lives, these preventive signals protect valuable 
infrastructure and reduce the risk to the environment. 

From a regulatory compliance perspective, artificial intelligence-powered diagnostics facilitate compliance 
with regulations from entities like the Environmental Protection Agency (EPA), Occupational Safety and 
Health Administration (OSHA), and North American Electric Reliability Corporation (NERC). Emissions 
levels, noise levels, and thermal discharge levels can be continually monitored and forecast using AI patterns 
learned from acceptable operating baselines. For regulatory audits or incident investigations, such systems 
deliver trackable logs and anticipatory analysis to ensure transparency and accountability. Coupling fault 
detection with compliance dashboards facilitates automated reporting and threshold breach early warnings, 
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saving staff effort and maximizing chances for continuous approval to operate. In short, AI not only 
reduces safety hazards but also prepares power plants for better, less expensive regulatory interactions. 

 SCADA and IoT Integration 

One of the strongest capabilities of applying artificial intelligence-based fault detection in the American 
energy sector lies in its smooth integration with Industrial Internet of Things (IIoT) devices and Supervisory 
Control and Data Acquisition (SCADA) systems. Contemporary gas turbines have onboard sensors and 
digital control systems that gather and transmit temperature data, pressure, rates of flow, and mechanical 
condition data at all times. By integrating machine learning algorithms natively into SCADA environments, 
such data streams may be analyzed in near real-time to identify anomalies and trigger automated alarms. 
This level of integration gives control room operators intelligent diagnostic capabilities, facilitating speedier 
and better-informed decisions without the necessity for real-time human monitoring.  

Furthermore, IoT connectivity increases the reach and flexibility of AI-powered maintenance to dispersed 
energy assets. Information from numerous turbines, even those at remote or unattended facilities, can be 
streamed to a unified cloud platform to enable monitoring and model retraining. Edge computing devices 
may also serve to host lightweight AI models to enable local inference, reducing latency and ensuring fault 
detection even in the case of minimal network connectivity. This decentralized intelligence infrastructure 
enables adaptive maintenance schemes as well as scalable implementation across the disparate turbine fleets 
utilized across the U.S. power grid. Ultimately, integration with SCADA and IoT not merely increases the 
level of operational intelligence but provides a platform for autonomous maintenance ecosystems to 
support the digital transformation initiatives of the American electric power industry. 

Strategic Considerations and Future Work 

Limitations 

Despite promising results exhibited by fault detection models incorporating artificial intelligence, there are 
limitations to be recognized—namely, limitations in the quality and granularity of available input data. 
Successful deployment of predictive algorithms is contingent on access to high-frequency, high-resolution 
sensor data reflecting the rapid changes characteristic of turbine operations. Legacy turbines, particularly in 
older U.S. infrastructure, are typically outfitted with low-bandwidth data acquisition systems that cannot 
sense minute, brief faults appearing in millisecond-level vibration spikes or micro-variations in fuel-air ratio. 
Insufficient data of this type can restrict model sensitivity, lowering early fault detection accuracy and 
interfering with the detection of pre-failure behaviors. Sensors themselves will further degrade or drift with 
time, injecting noise or bias into the data that will degrade model performance unless rigorous calibration 
and verification processes are imposed. 

An additional constraint is the infrastructure needed to enable real-time analytics. Fault detection using AI 
requires strong computational power, whether at the edge or in data centers, to process and reason about 
massive amounts of streaming data. Smaller power providers or legacy power plants might not have the 
technical and financial means to implement such platforms, constraining scalability. Interoperability is still 
another problem to be encountered in integrating AI into SCADA architectures of various kinds and 
proprietary nature. In the absence of standardized data protocols, as well as a common cybersecurity model, 
integrating AI into mixed-vendor environments is risky and time-consuming. Therefore, while there is 
indeed a clear road ahead with AI fault detection, its deployment, in reality, is presently hampered by 
technical roadblocks to be addressed rationally through modernization, investment, and policy alignment. 

Research Extensions 

Future steps for the development of fault detection in gas turbines using AI include deeper integration of 
time-series predictive models and deep learning architectures with improved capabilities to identify long-
term temporal relationships and sophisticated fault development patterns. RNN, LSTM, and TCN 
architectures are particularly suitable for modeling temporal turbine sequences and have the potential to 
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predict fault incidence, as well as the time and development of mechanical failures. Their integration will 
expand fault prognostic capabilities toward real-time dynamic scheduling of maintenance as the condition 
of the equipment evolves. Another direction is to merge deep learning with conventionally statistical 
diagnostic approaches to produce explainable and high-performing systems, combining domain-specific 
rules with data-driven reasoning. 

An important research focus in the future is the detection of multi-fault and cascade failure regimes, wherein 
multiple interdependent components degrade concurrently or initiate one another sequentially. Existing 
classification frameworks are mainly pre-trained to identify single-point anomalies; yet, real-world turbine 
failures are typically systemic, encompassing a sequence of events spanning across the combustion, 
mechanical, and thermal subdomains. Extending model capabilities to identify such compound failure 
regimes needs to be supported by augmented datasets annotated with rich failure histories, along with new 
model architectures compellingly modeling hierarchical dependencies and cause-effect couplings. Simulated 
worlds and digital twins of turbine systems may also be exploited to create synthetic multi-fault data for 
training. Developing these capabilities will markedly increase fault detection accuracy and response 
strategies, paving the way for predictive maintenance frameworks truly competitive with human expertise. 

 Policy and Investment Implications 

The deployment of AI-based fault detection in the US energy sector is well-aligned with national initiatives 
in infrastructure upgrading, energy resilience, and environmentally friendly operations. As the US 
Department of Energy (DOE) and its allied government entities drive the development of smart grids and 
industrial digitalization, investments in intelligent maintenance solutions will find strong support through 
competitive grants and government-private sector collaboration. By proving verifiable improvements in 
efficiency, safety, and emissions management, fault detection using AI technology will qualify under 
initiatives like the Infrastructure Investment and Jobs Act (IIJA), which distributes considerable funding to 
critical grid assets and technology development. Utilities implementing such systems will, in addition, have 
firmer grounds to request rate recovery and regulatory clearance for expenditures in the form of supported 
efficiency and cost savings through data-informed strategies. Policy support is also provided in the areas of 
workforce transformation and cyber security.  

As AI modifies the working environment of the gas turbine, there is a corresponding requirement for 
training courses to support technicians and engineers with capabilities to interpret machine learning output 
and cope with SCADA systems integrated with AI. Federal support can be provided through funding for 
education and skills development initiatives to bridge the skills gap. Concomitantly, national policy will have 
to set criteria and standards for the secure implementation of AI within critical energy infrastructure, 
preventing data breaches and model tampering risks. Strategic investment in such initiatives guarantees not 
just deployment success for AI in gas turbine monitoring but, by so doing, the development of a future-
proof operative environment supporting long-term energy self-sufficiency, sustainability aspirations, as well 
as technological supremacy in the industrial deployment of AI. 

VIII. Conclusion 

The central objective of this research was  to build and test an AI-driven fault detection system to identify 
early signs of failure in gas turbine engines and apply specifically to deployment within the energy sector of 
the U.S. The dataset used in this research entails high-resolution operational parameters gathered from 
different industrial gas turbines operating within U.S. energy facilities. Engine operational data includes 
multiple time-dependent measurements that monitor essential parameters like turbine temperature at the 
inlet and outlet and rotational speed, torque measurements alongside vibration levels and power output, 
fuel rate and intake pressure, and exhaust temperature and oil temperature. Real-time data acquisition from 
embedded sensor arrays allowed researchers to track turbine performance throughout changing operational 
states at sub-minute data points. To support strong and interpretable fault detection, we utilized a variety 
of machine learning models, each chosen for its specific strength at discriminating operations from fault 
conditions in gas turbines. We used a multi-metric-based evaluation approach that combined statistical 
validity with operational applicability to assess each model's fault detection capability. Logistic Regression 
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attained the highest accuracy, followed very closely by Random Forest. XG-Boost attained the lowest 
accuracy of all three at about. The use of AI-driven fault detection under predictive maintenance has the 
potential to revolutionize U.S. power plants using gas turbines as the primary source of electricity 
generation. AI-powered fault detection is critical to improving grid resilience within the U.S. energy 
infrastructure by assuring that peak-demand-balancing and grid-stabilizing gas turbines remain fault-free. 
One of the strongest capabilities of applying artificial intelligence-based fault detection in the American 
energy sector lies in its smooth integration with Industrial Internet of Things (IIoT) devices and Supervisory 
Control and Data Acquisition (SCADA) systems. Future steps for the development of fault detection in 
gas turbines using AI include deeper integration of time-series predictive models and deep learning 
architectures with improved capabilities to identify long-term temporal relationships and sophisticated fault 
development patterns. RNN, LSTM, and TCN architectures are particularly suitable for modeling temporal 
turbine sequences and have the potential to predict fault incidence, as well as the time and development of 
mechanical failures.  
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