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Abstract  

Switching towards clean energy vehicles (CEVs) is a key measure in curbing greenhouse gas emissions and fighting climate change in 
the USA. Yet, despite mounting environmental consciousness and policy stimulus, the uptake of CEVs is still quite low. The main 
aim of this research is the creation of a market analysis framework based on machine learning for the prediction of CEV adoption. 
Utilizing supervised learning algorithms—Random Forest, Logistic Regression, and Decision Tree—the research compares their 
performance in segmenting prospective CEV adopters in terms of infrastructural, environmental, and socio-economic variables. The 
dataset included an extensive list of variables designed to capture the various factors that drive clean energy vehicle (CEV) adoption. It 
includes demographic variables like age, income, educational level, and geographical region, as well as economic variables like vehicle 
price, purchase incentives, and cost of ownership. In addition, it covers environmental attitudes, captured in terms of questionnaire 
responses on climate change concerns as well as sustainability values. We initiated this research using a range of machine learning models 
for the prediction of clean energy vehicle adoption, each of which was used for its particular strengths. To assess the performance of our 
predictive models, we utilized an extensive range of evaluation metrics: Accuracy, Precision, Recall, F1 Score, and ROC-AUC. Perfect 
scores on all metrics were recorded for the Decision Tree model, with 100% accuracy, precision, recall, and F1-score. Meanwhile, slightly 
lower overall performance values were reported for both Logistic Regression and Random Forest models. Sophisticated CEV adoption 
models' granular outputs can be directly applied in designing and implementing clean vehicle incentive structures at local, state, and 
federal levels. Knowing the particular socioeconomic, demographic, and geospatial drivers or impediments of adoption in specific regions 
allows policymakers to craft optimally effective incentive structures. Sophisticated insights derived from patterns of CEV adoption 
provide irreplaceable value for automotive companies and clean technology firms working in the US market. Future demand for CEVs 
is important for successful infrastructure planning, especially for the siting of electric charging stations. Monitoring CEV adoption rates 
is critical for measuring progress towards emissions reduction targets and facilitating broader sustainability planning activities. 

Keywords: Clean Energy Vehicles, Market Adoption, Machine Learning, Logistic Regression, Random Forest, Decision Tree, 

EV Market, Sustainability. 

 

I. Introduction 

Background 

Shovon et al. (2025) found that transportation is among the largest contributors of global emissions of 

greenhouse gases in the USA, representing about 24% of global CO₂ emissions. In response to increasing 
climate pressures, clean energy vehicles (CEVs), such as battery electric vehicles (BEVs), plug-in hybrid 
electric vehicles (PHEVs), and hydrogen fuel cell vehicles (HFCVs), are being promoted as cleaner options 
as substitutes for conventional internal combustion engine (ICE) vehicles (Anonna et al, 2023; Ahmed et 
al., 2025). Governments across the globe are promoting CEVs through policy interventions such as taxes, 
subsidies, and emission norms regulations. However, market penetration of CEVs is less than expected, 
leading one to wonder what is causing the resistance in achieving high penetration of CEVs in the market. 
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Identifying the determinants of CEVs' adoption is key to speeding up the move toward green mobility 
(Barua et al., 2025). 

Hasan (2024) indicated that the role of clean energy vehicles (CEVs), such as electric vehicles (EVs) and 
hydrogen fuel cell vehicles, in environmental sustainability is paramount. While the world struggles with 
the consequences of climate change, exemplified by increasing global temperatures, frequent occurrences 
of extreme weather patterns, and poor air quality, the transportation sector has emerged as one of the major 
causes of greenhouse gas emissions. CEVs offer an achievable solution for curbing these emissions as well 
as achieving sustainability in the coming days. Choudhury et al. (2024) argue that by making use of 
renewable power sources, CEVs can significantly curtail carbon footprints, end fossil-fuel dependence, as 
well as encourage independence in terms of power supply. Notwithstanding the increasing awareness of 
environmental as well as economic benefits of CEVs, their uptake continues to be frustratingly low in 
different markets. This divide is starkly evident in those markets where conventional internal combustion 
engine vehicles remain the clear leaders, largely because consumers are hesitant due to anxiety about range, 
supply of charging points, upfront costs of purchase, as well as perceptions about performance as well as 
reliability of the CEVs (Reza et al., 2024). 

Problem Statement 

Shil et al. (2024) found that while CEVs have great environmental benefits, their growth is still hampered 
due to numerous factors, such as high initial costs, inadequate charging availability, range anxiety, as well as 
customer concerns over performance and reliability. Conventional market analysis, through surveys and 
regression statistics, gives poor predictive capability in terms of forecasting uptake trends. As per Hossain 
et al. (2025b), Machine learning (ML) methods do, however, provide a strong alternative in that they can 
examine high-dimensional, complicated datasets for underlying patterns and forecast customer activity with 
great accuracy. This research fills the research gap in the field through the use of ML algorithms in key 
uptake drivers identification as well as market trends forecasting. 

Gazi et al. (2025) determined that the issue is compounded by the numerous factors that drive consumer 
choice, such as but not limited to environmental consciousness, government support, technological 
innovation, and socio-economic status. It is essential to understand these forces to gain insights into the 
obstacles towards broader CEV uptake. Meeting the urgent need for an in-depth analysis of these factors 
based on machine learning is the objective of this research, as this is an effective method for the extraction 
of subtle patterns and structures in high-dimensional data. By building on market analysis through machine 
learning, this research hopes to forecast CEV uptake through the determination of key determinants as well 
as assessing the efficiency of different predictive modeling approaches (Chowdhury et al., 2024).  

Research Objective  

The main aim of this research is the creation of a market analysis framework based on machine learning 
for the prediction of CEV adoption. Utilizing supervised learning algorithms—Random Forest, Logistic 
Regression, and Decision Tree—the research compares their performance in segmenting prospective CEV 
adopters in terms of infrastructural, environmental, and socio-economic variables. This research ranks the 
importance of these variables to guide focused policy intervention as well as marketing intervention. This 
research will investigate the socio-economic, technological, as well as behavioral determinants that drive 
consumer choice as well as preferences for clean energy vehicles. Further, it will evaluate whether machine 
learning algorithms can be used effectively in predicting CEV adoption, thereby establishing the validity of 
such sophisticated analysis methods in market analysis. It will then examine which machine learning 
algorithm between logistic regression, random forests, as well as decision trees is best at forecasting CEV 
adoption, thereby establishing an evaluation framework for comparing their efficiency. By doing this in this 
multi-faceted manner, this research hopes to advance the research on CEV adoption as well as provide 
practical insights for stakeholders seeking to encourage sustainable transportation options. 

Research Questions: 
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1) RQ1: What factors influence the adoption of CEVs?  

o  The question here addresses economic, infrastructural, and behavioral factors influencing consumer 
choice 

2) RQ2: Can machine learning models accurately predict CEV adoption?  

o  This inquiry compares the predictive accuracy of Random Forest, Logistic Regression, and Decision Tree 
models. 

3) RQ3: Which machine learning algorithm performs best in predicting CEV adoption?  

o  This research question compares the accuracy, precision, recall, and F1-score values to select the best 
algorithm. 

Literature Review 

Overview of CEV Market Developments and Growth Potential 

According to Ahmed et al. (2025), the global market for clean energy vehicles (CEVs) has undergone 
considerable growth in the last decade, fueled by tight environmental regulations, technological progress in 
batteries, and growing consumer consciousness towards sustainability. By the year 2022, electric vehicle 
(EV) sales had reached over 10 million units, which is a 55% improvement on the previous year, with China, 
Europe, and the United States leading the charge in adoption. Future projections are that EVs are poised 
to take up 30% of total vehicle sales in the year 2030, as long as policy support continues and battery prices 
decline. Regional imbalances, however, remain in place, with advanced economies having higher adoption 
rates as a result of strong charging infrastructure as well as fiscal incentives, in contrast with their 
counterparts in the developing countries struggling with affordability issues as well as inadequate charging 
infrastructure (Afandizadeh et al., 2023). 

Aside from battery electric vehicles (BEVs), other CEV technologies like plug-in hybrids (PHEVs) and 
hydrogen fuel cell vehicles (HFCVs) are gaining acceptance, but at a slower rate. PHEVs are a bridge 
technology, relaxing range anxiety through their combination of electric drive with conventional engines, 
while HFCVs are being considered for heavy-duty freight due to their ability for quick refueling (Aslani et 
al., 2023). Despite these developments, challenges like battery supply chain bottlenecks, raw material 
shortages (e.g., lithium, cobalt), and incoherent policy frameworks are threats to continued market growth. 
Consumer attitudes—desiring vehicle reliability as much as misconceptions about environmental 
benefits—also are determinants of rates of adoption. Taking an in-depth look at these market forces is 
necessary for stakeholders who want to drive momentum toward sustainable mobility (Bas et al., 2021). 

Review of Empirical Studies on Factors of CEV Adoption 

A lot of research has been done on identifying determinants of CEV adoption, classifying influencing 
factors in terms of demographic, economic, environmental, and infrastructural dimensions. Younger 
consumers who are highly educated as well as environmentally minded are found in studies to favor 
adopting CEVs. Research conducted in 2022 among Zahedi et al. revealed that people who held pro-
environmental attitudes had a 40% higher tendency to buy an EV as opposed to those who were 
sustainability indifferent (Bin Abu Sofian, 2024). Urban residents indicated higher adoption due to 
improved charging station accessibility as well as tighter local emissions controls within their areas of 
residence. Gender is also an influencing factor, as some surveys imply that men are likely to be more 
interested in EVs based on greater exposure to auto technology (Gong et al., 2022). 

Liu et al. (2022) asserted that upfront costs of CEVs are still the main obstacle, even with future savings on 
fueling and maintenance costs. Studies carried out in 2020 by Sumon et al. (2024), proved the impact of 
government incentives and tax credits on increasing adoption rates, as a difference of 10% in purchase 
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price can lead to an increase in sales of 25%. Khamees et al. (2024) stated that fuel price is another factor 
affecting adoption; localities with high petrol prices experience faster EV adoption as consumers look for 
cost-saving options. Availability of loans at favorable rates of interest, as well as leases, adds affordability 
as well (Zhang et al, 2024). 

Lo Franco et al. (2023) ascertained that access to charging ports is a key determinant. In a 2022 study, it 
was found that consumers are 50% more likely to buy an EV if fast-charging is within 5 miles of their 
distance. On the other hand, "range anxiety" as a psychological hurdle continues to exist, especially where 
charging points are far between. Advances in battery performance, like higher energy densities and charging 
speeds, are slowly countering these fears. While environmental motivations are an important driver, social 
norms and peer influence are themselves found to be driving adoption, according to studies. According to 
a 2023 survey conducted by Ma et al. (2022), consumers were 30% more likely to look at an EV as an option 
if their friends or immediate family owned one. Media coverage, as well as celebrity endorsement, continues 
to build consumer demand, illustrating social contagion in the diffusion of technology (Ma et al., 2022). 

Analysis of Machine Learning Applications for Predicting Technology Adoption 

Mandala et al. (2024) established that the integration of machine learning into technology adoption analysis 
is an important development in uncovering consumer patterns and market trends. In clean energy vehicles, 
adoption patterns are increasingly predicted, consumer preferences evaluated, and determinants of 
decision-making detected using machine learning algorithms. Machine learning methods have been used in 
different studies to study big data on consumer features and the tendency towards the adoption of 
technologies like electric vehicles and renewable energies. Algorithms like logistic regression, random 
forests, and decision trees have been used to forecast adoption behaviors in modeling, each providing 
different benefits in terms of interpretability, flexibility, and performance (Singh et al., 2024). 

Machine learning applications have been especially useful in identifying non-linear relationships and 
interactions between variables, allowing researchers to build more subtle predictive models. These 
predictive models can include any of a broad range of factors, from economic and demographic indicators 
through environmental attitudes and technology perceptions, thereby presenting an overall picture of the 
place of adoption within the broader context. In addition, machine learning methods allow for the 
determination of segments in the base of consumers, making it possible for targeted marketing campaigns 
as well as intervention based on selected consumer profiles (Recalde et al, 2024). As the CEV market 
continues to grow, the use of machine learning is promising not just for predictive refinement but for 
identifying policy decision areas as well as investments in supporting clean energy vehicle adoption within 
the necessary structure for these investments. In this regard, the intersection of machine learning with 
technology adoption research is an area of rich research prospect with significant contributions possible for 
influencing the direction of sustainable transport initiatives (Sizan et al., 2024) 

According to Saqib et al. (2021), Machine learning has become an effective means of measuring intricate 
patterns of adoption, outstripping conventional statistical procedures in predictive power. A few studies 
utilized ML models to forecast EV market penetration. Zhang et al. (2021) utilized a Random Forest model 
in evaluating consumer surveys, with an accuracy of 87% in classifying intended adopters on the grounds 
of income, environmental attitude, as well as infrastructural accessibility. Reza et al. (2024) utilized Gradient 
Boosting Machines (GBM) in regional sales data, with the two strongest predictors found to be government 
incentives as well as fuel prices.  

Aside from EVs, ML has been applied in estimating the adoption of other clean technologies, like solar 
panels and wind power. In their 2023 study, Afandizadeh et al. used neural networks in projecting residential 
solar take-up and established that local climate, electricity price, and housing income were major factors. 
Reinforcement learning has been applied in streamlining dynamic pricing schemes for renewable energy 
contracts, increasing consumer take-up. Comparative Advantages of ML Over Traditional Methods. In 
contrast to linear relationships assumed in logistic regression, non-linear interactions between variables are 
captured in ML models, making predictions more robust. Ensemble methods (Random Forest, XG-Boost) 
are especially efficient in processing high-dimensional data with incomplete values. In addition, deep 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v4i4.6742


Journal of Ecohumanism 
2025 

Volume: 4, No: 4, pp. 404 – 426 
ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 

https://ecohumanism.co.uk/joe/ecohumanism  
DOI: https://doi.org/10.62754/joe.v4i4.6742  

408 

 

learning can handle unstructured data (e.g., social media sentiment) in an attempt to measure popular 
sentiment, providing real-time adoption rates (Anonna et al., 2023). 

II. Data Collection & Preprocessing 

Dataset Overview 

The dataset included an extensive list of variables designed to capture the various factors that drive clean 
energy vehicle (CEV) adoption. It includes demographic variables like age, income, educational level, and 
geographical region, as well as economic variables like vehicle price, purchase incentives, and cost of 
ownership. In addition, it covers environmental attitudes, captured in terms of questionnaire responses on 
climate change concerns as well as sustainability values. It even adds in technological attitudes, such as 
knowledge of electric vehicles (EVs) and charging concerns, to better understand consumer intent. It will 
be based on national surveys, market publications, as well as scholarly research to have the strongest 
possible foundation for the machine learning models that will forecast CEV adoption patterns. 

Data Preprocessing  

The Python code uses data preprocessing libraries pandas and scikit-learn. Firstly, it starts with the handling 
of missing values, replacing numerical columns with their means and categorical columns with their modes. 
Secondly, it then drops rows with only NaN values and drops certain unnecessary columns. Thirdly, it then 
encodes categorical variables, using Label Encoding on binary features and One-Hot Encoding on multi-
category features with Label Encoder and pd.get_dummies, respectively. Fourthly, it scales numerical 
features using StandardScaler. It then splits the dataset into train and test sets (80%-20%) and prints out 
their shapes, readying data for later machine learning applications. 

Key Features Selection 

S/No. Key Feature Description 

01. Vehicle Type Refers to the class of the vehicle, e.g., hybrid, 
hydrogen fuel cell, or electric. 

02. Purchase Price Vehicle's market price, which can affect consumers' 
purchasing decisions. 

03. Government Incentives Government financial incentives in the form of tax 
credits or rebates for buying clean-energy cars. 

04. Charging Infrastructure 
Availability 

Whether charging points for electric vehicles are 
available in an area. 

05. Fuel Costs Average price of energy (electricity or hydrogen) used 
to run clean energy cars relative to conventional fuels. 

06. Environmental Awareness The degree of consumer concern and awareness 
about environmental problems and climate change 
influences consumers' choice of cars. 

07. Public Transportation Options: The quality and availability of public transportation 
potentially affect the need to purchase an automobile. 

08. Insurance Premiums Average insurance premiums for clean energy 
vehicles, in contrast to conventional combustion 
engine vehicles. 

09. Consumer Demographics Features of prospective buyers, e.g., age, financial 
status, education level, and urban vs. rural living. 

 

Exploratory Data Analysis 
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Exploratory data analysis (EDA) is an essential step in the data science pipeline where datasets are rigorously 
examined to summarize their key features, highlight anomalies, reveal underlying patterns, and validate 
initial hypotheses before formal statistical modeling or machine learning is applied. EDA prioritizes 
visualization, descriptive statistics, and data cleaning to develop an intuitive feel for the structure, 
distribution, and variable relationships of the data. In contrast to confirmatory data analysis (which is 
hypothesis-driven), EDA is open-ended and iterative, enabling researchers to discover insights that can 
guide future modeling choices. 

i. Electric Vehicle Adoption Over the Years 

Python code uses matplotlib.pyplot and seaborn libraries for visualizing the distribution of electric vehicles 
across different model years. It initially creates a figure of specified size (10x5 inches). It then uses seaborn. 
histplot for plotting the histogram for the 'Model Year' column of a pandas DataFrame df. It uses this 
histogram with 20 bins and adds an overlay of a kernel density estimate (KDE) for a smoother 
representation of the distribution, with the bars in blue color. It then sets the plot title as "Electric Vehicle 
Adoption Over the Years" with font size 14, x-axis label as "Model Year" and y-axis label as "Number of 
Vehicles", and finally displays the plotted figure using plt.show(). 

Output: 

 

The histogram showing "Electric Vehicle Adoption Over the Years" shows an upward trend in the adoption 
of electric vehicles (EVs) between the years 2000 and 2025, with accelerated growth starting as early as 
2010. Beginning in the initial period, adoption rates were quite low, with fewer thousand vehicles in the 
initial years. But as of 2015, there is accelerated growth, with the peak year in 2021 at over 120,000 vehicles 
adopted in that year alone. Various reasons explain the growth, ranging from the advances in battery 
technology to growing consumer demand as well as favorable government policy aimed at clean energy. 
There is also sustained growth through the year 2025, showing that the momentum for electric vehicle 
adoption is expected to be ongoing. Interestingly, the shape of the histogram shows an unmistakable change 
in market dynamics, an increasing acceptance of electric vehicles as suitable options for replacing 
conventional engines. 

ii. Top 10 Electric Vehicle Brands 

Python code is intended to plot the top 10 electric vehicle brands according to their frequency in a dataset. 
It creates a figure of size (12x5 inches). It finds the value counts of the column 'Make' in a pandas 
DataFrame df and picks the top 10 most frequent brands using .nlargest(10). It uses seaborn. Barplot for 
making a horizontal bar plot with brand names on the y-axis and the count of vehicles on the x-axis based 
on the 'viridis' color map. It labels the plot as "Top 10 Electric Vehicle Brands" with font size 14, and the 
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x-axis is labeled as "Brand" while the y-axis is labeled as "Number of Vehicles". It finally rotates the x-axis 
tick labels by 45 degrees for better visibility and shows the plot using plt.show(). 

Output: 

 

Figure 2: Top 10 Electric Vehicle Brands 

The histogram "Top 10 Electric Vehicle Brands" visibly outlines the dominance of Tesla in the electric 
vehicle market, presenting an overwhelming adoption level of over 80,000 vehicles. This strong contrast 
illustrates Tesla's high market share, placing it at the top in the EV market. Next in line are Chevrolet and 
Nissan, whose top brands have significantly lower adoption rates, as each brand accounted for about 15,000 
to 20,000 vehicles. The other brands, such as Ford, Kia, BMW, Toyota, Hyundai, Rivian, and Jeep, record 
even lower adoption rates, ranging between about 5,000 and 10,000 vehicles in each brand. This spread 
illustrates the concentrated EV market, where Tesla takes center stage with its high presence outshining its 
rivals, illustrating brand loyalty as well as consumer preference for Tesla's innovative technology, as well as 
performance. 

iii. Electric Range Distribution by Vehicle Type 

Python code created a violin plot for the distribution of the 'Electric Range' for different categories of 
'Electric Vehicle Type' in a pandas DataFrame object df. It begins with the creation of a figure of size (10x6 
inches). Seaborn. violinplot is invoked to form the plot with the x-axis labeled as 'Electric Vehicle Type' 
and y-axis labeled as 'Electric Range' using the color scheme 'cool warm'. The plot is labeled as "Electric 
Range Distribution by Vehicle Type" in size 14 font. Secondly, the tick labels for the x-axis are rotated for 
easy reading by an angle of 45 degrees, and the violin plot is generated using plt.show(). 

Output: 
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Figure 3: Electric Range Distribution by Vehicle Type 

The chart above is a comparative graph showing the electric range ability of two electric vehicle categories: 
Plug-in Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). The distribution shows 
that BEVs have considerably higher electric ranges overall, with most vehicles ranging far above 200 miles, 
while some even span over 300 miles. PHEVs, on the other hand, have a diverse range with a majority of 
the vehicles having electric ranges typically under 50 miles, while some range upwards of about 100 miles. 
Violin plot shape demonstrates the higher median electric range for BEVs, but PHEVs have their range 
spread out wider due to the capability for engine combustion support. This shows the difference in the 
electric-only driving capability of BEVs as an important factor for consumers who are choosing between 
making the full switch to electric vehicles. All in all, the histogram is proof of the transformation within 
electric vehicle technology, stressing the higher range capability of BEVs over PHEVs. 

iv. Top 10 Electric Utility Providers for EVs 

The Python code was implemented for visualizing the top 10 electric utilities that facilitate electric vehicle 
uptake, according to their frequency within a dataset. It starts with the creation of a specified-size figure 
(size = 20x10 inches). Next, it finds the value counts of the column labeled as 'Electric Utility' in the pandas 
DataFrame df and takes the top 10 most often occurring utilities as .nlargest(10). It creates the bar plot 
using seaborn. Barplot, with the x-axis label as the name of the utilities and the y-axis as the number of cars 
corresponding to each of the utilities using the color map 'magma'. It is captioned as "Top 10 Electric 
Utility Providers for EVs" with font size = 14, with the axes labeled as "Electric Utility" on the x-axis and 
"Number of Vehicles" on the y-axis, respectively. It completes the code with the x-axis tick labels rotated 
at an angle of 45 degrees for easier reading, before finally displaying the bar plot using plt.show(). 

Output: 
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Figure 4: Top 10 Electric Utility Providers for EVs 

The histogram "Top 10 Electric Utility Providers for EVs" graphically depicts electric vehicle (EV) 
adoption among different utility providers, with noticeable disparity in the number of EVs each company 
supports. Interestingly, Pacific Gas and Electric Company (PG&E) is noticeably leading, with an adoption 
rate of over 80,000 vehicles, reflecting the pivotal position it enjoys in supporting EV charging provision 
and consumer access to electric power. Next in line are other influential providers such as Consolidated 
Edison (Con Edison) and Florida Power & Light, with significantly lower rates of adoption, supporting 
between 15,000 and 20,000 electric vehicles respectively. Other utility providers have even lower numbers, 
with fewer than 10,000 vehicles contributing to the total count. This histogram emphasizes the value of the 
role played by the utility companies in EVs' success, as their policies and provision can go a long way toward 
influencing consumer adoption rates. Moreover, the stark difference in the numbers of EVs among 
providers reflects on the disparate nature of electric vehicle support, with the implication that those utility 
companies with strong schemes and incentives can move consumers in their direction while supporting the 
electric mobility drive. 

v. Electric Vehicle Range Distribution 

The Python code plots the effect of legislative districts on electric vehicle take-up as a histogram. It begins 
with initializing a figure of size (10x5 inches). It then creates a histogram for the 'Legislative District' column 
within a pandas DataFrame called df using seaborn. histplot. It drops any rows with missing values in the 
column 'Legislative District' before plotting using .dropna(). It sets the histogram with 30 bins and adds in 
a kernel density estimate (kde) for a better representation of the distribution with bars in dark blue color. 
It then sets the title of the plot as "Impact of Legislative Districts on EV Adoption" in size 14, x-axis label 
as "Legislative District" and y-axis label as "Number of Vehicles", before finally showing the plot using 
plt.show(). 

Output: 
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Figure 5: Electric Vehicle Range Distribution 

The histogram "Electric Vehicle Range Distribution" is a density plot graphing the distribution of electric 
vehicle (EV) ranges in miles. The graph displays a high peak at the lower range end of the spectrum, 
demonstrating that the majority of EVs are concentrated in the range of 0 to 50 miles, possibly reflecting 
the dominance of either older or less sophisticated models. As the range progresses, the density shows a 
slower decline before experiencing a significant drop-off after 150 miles, showing that consumers may be 
attracted towards vehicles with lower ranges, but that fewer EVs still exist with the ability to reach up to 
350 miles. The long tail of the distribution reveals that higher-end vehicles are less frequent but do exist 
and are intended for consumers preferring higher-endurance capabilities. Generally speaking, this histogram 
showcases an important factor in consumer decisions in the EV market, demonstrating the necessity for 
battery technology improvements in increasing options across model ranges and responding to the 
increasing demand for electric mobility capabilities. 

vi. Pair plot of Key Features 

A Python code script was implemented that produces a pair plot showing the pairwise relations among 
'Model Year', 'Base MSRP', and 'Electric Range' in a pandas DataFrame called df. The seaborn. The pairplot 
function is utilized for plotting this matrix of graphs, with scatter for each variable pair as well as kernel 
density estimates (kde) on the diagonal for each single variable's distribution. Moreover, the overall figure 
is given a supertitle "Pairplot of Key Features" with size 14, placed just above the graphs using the y 
parameter. Finally, the resulting pair plot is visualized with plt.show(), bringing out the relations as well as 
distributions of those key electric vehicle features. 

Output: 
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The above Pairplot of Key Features investigates relationships between three key variables: Model Year, 
Base MSRP (Manufacturer's Suggested Retail Price), and Electric Range. The diagonal plots the histogram 
for the individual variable, and it is easy to see that the `Model Year` variable has an exponential growth 
number of cars alive starting from around 2010, peaking in the latest years. Base MSRPs cluster tightly 
around a budget price point, with a handful atop a higher price point, suggesting that although most EVs 
are affordable, they do come in key segments for price non-sensitives. From the Electric Range distribution: 
about 80% of vehicles have less than 100 miles of range, with a few vehicles over that mark. Scatter plots 
- Among these variables, between-plot we see interesting correlations; newer vehicles are typically more 
expensive (in terms of MSRP), reflecting as models age → and are replaced → more technology and features 
are integrated. There is also a positive correlation between Base MSRP and Electric Range, meaning that 
the price of vehicles does relate to the capacity of their batteries and thus their range. In summary, this 
pairplot shows how these key features in electric vehicles are interrelated to each other following 
advancements in technology, price,  and consumer preferences. 

vii. CAFV Eligibility Distribution 

The Python code script generated a donut chart created from a pandas dataframe named df, which visualizes 
the distribution of 'Clean Alternative Fuel Vehicle (CAFV) Eligibility'. First, it creates a figure of size 8x5 
inches. Then it gets the value counts of the Clean Alternative Fuel Vehicle (CAFV) Eligibility. The plt. 
This creates the pie chart where the wedge sizes are generated based on the value counts, and the labels 
are by the index of the value counts, and finally, the slices are displayed with the percentages converted to 
decimal places followed by a percent sign. The slices are in blue and orange colors, and the starting angle 
of the first wedge is 140 degrees. Then, using plt, add a white circle in the center. Circle, and then added 
to the axes in ax add_artist to fill the donut hole. Third, we set the title of the plot to be "CAFV Eligibility 
Distribution" with font size 14; and finally, we display the donut chart with plt. show(). 

Output: 
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Figure 7: CAFV Eligibility Distribution 

The Pie chart "CAFV Eligibility Distribution" classifies electric vehicles according to their status for the 
Clean Alternative Fuel Vehicle (CAFV) program, providing important insights into vehicle categorization. 
Most significantly, about 58.2% of the vehicles are in the "Eligibility unknown as battery range has not been 
researched" category, reflecting the major share of EVs for which the eligibility standards have not been 
determined, perhaps due to incomplete data or research conducted on those vehicles. In contrast, 31.9% 
of the vehicles are in the "Clean Alternative Fuel Vehicle Eligible" category, reflecting a healthy proportion 
of the market that qualifies for the required criteria for incentives or benefits under this initiative. Of 
particular note are those vehicles considered "Not eligible due to low battery range" at 9.9%, reflecting a 
smaller but considerable segment that fails the minimum criteria for range as it pertains to their suitability 
for being included in incentive schemes. This histogram highlights how battery range is significant in 
assessing vehicle suitability for incentive schemes and how additional research may help build greater insight 
into the overall EV market. 

IV. Methodology 

Model Selection 

We initiated this research using a range of machine learning models for the prediction of clean energy 
vehicle adoption, each of which was used for its particular strengths. We started with Logistic Regression 
as our base classifier. This is an easy model in terms of interpreting how the dependent variable (vehicle 
adoption) is related to the independent variables (such as price, range, and consumer demographics). The 
popular logistic regression model is especially useful for determining how any feature affects the adoption 
probability of clean energy vehicles. 

Then, we used a Random Forest Classifier, an ensemble learning algorithm that improves predictive 
accuracy based on the combination of multiple decision trees. It was chosen because it can be applied 
effectively to new data, minimizing the overfitting possibility. Moreover, the random forest classifier has 
the benefit of providing feature importance information, enabling us to determine the factors of most 
significant impact on consumer adoption of clean energy vehicles. 

Finally, we incorporated a Decision Tree model in our analysis. It is preferred due to its simplicity, as it is 
easy to visualize, yielding transparent decision rules that facilitate easy interpretability. Decision trees enable 
stakeholders to see the decision-making rationale for predictions, which can be invaluable for decision-
making on policy and marketing campaigns intended to encourage clean vehicles. 

Training and Testing 
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For optimal performance of the models, we followed a systematic data partitioning to ensure that the 
dataset was separated into three different sets: Training, Testing, and Validation. We utilized the training 
set in fitting the models, while validation allowed us to adjust the hyperparameters as well as select the 
models without prejudicing the end performance metrics. The testing set that remained was used for the 
overall evaluation of the chosen model, so that our evaluation is in line with the ability of the chosen model 
to make predictions on independent data it has not seen before. 

To increase the reliability of our model, we used cross-validation methods, in this case, k-fold cross-
validation. This involves splitting the training data into k folds, or subsets, and repeatedly training on k-1 
folds while validating on the other fold. This is repeated k times such that each data point is seen once for 
both training and validation. Cross-validation reduces the impact of overfitting and gives a better 
measurement of the performance of the model as it averages across multiple runs. 

Evaluation Criteria 

To assess the performance of our predictive models, we utilized an extensive range of evaluation metrics: 
Accuracy, Precision, Recall, F1 Score, and ROC-AUC. Accuracy quantifies the percentage of correctly 
classified instances out of the total instances, giving us an overall measure of model performance. Precision 
assesses the proportion of true positives out of the total predicted as positive, but it is critical in cases where 
false predictions can be extremely costly. Recall evaluates the model's capacity for identifying all relevant 
instances, quantifying the ratio of true positives out of all actual positive instances. It is especially significant 
in those situations where failure in identifying an otherwise positive instance would have severe 
consequences. F1 score is a harmonic mean between recall and precision, providing one measure that 
merges both concerns, especially handy in handling imbalanced data sets. 

Results and Analysis 

Model Performance Evaluation:  

a) Decision Tree Modelling 

The Python code utilizes scikit-learn's implementation of the Decision Tree classifier. It initially imports 
required modules for utilizing the Decision Tree, hyperparameter search with Grid-Search-CV, and 
performance metrics. It defines the hyperparameters that need to be tuned in the form of a param_grid 
dictionary, specifying splitting criteria, maximum depth of the tree, minimum samples required for a node 
to be split, and minimum samples at the leaf node. 

A Grid-Search-CV object is then initialized with a Decision-Tree-Classifier, the parameter grid specified, 3-
fold cross-validation, the 'accuracy' scoring criterion, and the use of all CPU cores for parallel computation. 
It is then fit on the training data (X-train, y-train). Upon fitting, the best-performing estimator as well as its 
associated hyperparameters are accessed. It is based on the testing data (X-test), and finally outputs the 
optimal hyperparameters discovered, the classification report showing class precision, recall, F1-score, 
support for each class, and the overall accuracy score of the optimal Decision Tree classifier. 

Output: 
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Table 1: Decision Tree Results 

Decision Tree Classification Report: 
               precision    recall  f1-score   support 
 
           0       1.00      1.00      1.00     14217 
           1       1.00      1.00      1.00     26093 
           2       1.00      1.00      1.00      4489 
 
    accuracy                           1.00     44799 
   macro avg       1.00      1.00      1.00     44799 
weighted avg       1.00      1.00      1.00     44799 
 
 
Decision Tree Accuracy: 1.0 

 

The "Decision Tree Classification Report" table displays a thorough analysis of how the model has 
predicted across different classes, showing excellent performance. In class '0', which is probably non-
adopters of clean energy vehicles, the model had precision, recall, and an F1 score of 1.00 based on support 
of 14,217 instances. Class '1', the adopters, had perfect scores of 1.00 on all metrics with 4,489 instances as 
well. It is in line with an overall accuracy of 1.0 for the Decision Tree model, showing no misclassifications 
at any point in the test dataset, with 44,799 instances in total. Macro-average as well as the weighted-average 
reiterate the model performance on both classes, highlighting its reliability in clean vehicle adoption 
predictions. Such performance is seen as proof that the decision tree can pick up patterns in data, making 
it an effective analysis vehicle for stakeholders interested in consumer patterns in the clean vehicle market. 

b) Random Forest Classifier Modelling 

The Python script uses scikit learn to implement a Random Forest classifier and perform hyperparameter 
tuning with the Grid-Search-CV method. It loads the required libraries for Random Forest, grid search, 
and evaluation metrics. This involves defining a paramgrid dictionary that outlines which hyperparameters 
you wish to explore, such as n_estimators, max_depth, and min_samples_split. We initialize a Grid-Search-
CV object with a Random-Forest-Classifier, our parameter grid, 3-fold cross-validation, accuracy as the 
scoring metric, and all cores. We train the model on the available training data (X-train, y-train). Once 
trained, we extract the best estimator with associated parameters. It uses the test data (X-test) for 
prediction, and finally, it prints the best hyperparameters found, the classification report that shows the 
performance of the model for each class, and the overall accuracy of the best random forest model. 

Output: 
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Table 2: Random Forest Classifier Results 

Random Forest Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.97      0.99      0.98     14217 

           1       1.00      1.00      1.00     26093 

           2       1.00      0.89      0.94      4489 

 

    accuracy                           0.99     44799 

   macro avg       0.99      0.96      0.97     44799 

weighted avg       0.99      0.99      0.99     44799 

 

 

Random Forest Accuracy: 0.9860264738052189 

Above is the class report for the Random Forest classifier showing its performance on three classes (0, 1, 
and 2). For class 0, the classifier had a precision of 0.97, a recall of 0.99, and an F1-score of 0.98, based on 
support of 14217 instances. Class 1 had perfect performance, with precision, recall, as well as an F1-score 
of 1.00, in 26093 instances. For class 2, the precision remained at 1.00, but the recall decreased to 0.89, 
leading to an F1-score of 0.94 in 4489 instances. On average, the classifier showed high accuracy at 0.99 
for all instances at 44799 in total. Macro averaging for F1-score stood at 0.97, while for weighted averaging 
based on the class imbalance, the F1-score was the same at 0.99, reflecting excellent and balanced 
performance for the Random Forest classifier. The final accuracy for the Random Forest classifier is 
reported as about 0.986. 

c) Logistic Regression Modelling 

Python code uses scikit-learn for implementing the Logistic Regression model and hyperparameter tuning 
with Grid-Search-CV. It uses necessary modules for scikit-learn's Logistic Regression, grid search, and 
metrics for evaluation. It maps out hyperparameters that need to be tuned as values in a param_grid 
dictionary, namely the inverse of the regularization strength ('C') and the algorithm used as the solver. It 
instantiates a Grid-Search-CV object with a scikit-learn Logistic-Regression model, the passed parameter 
grid, 3-fold cross-validation, the scoring parameter as the 'accuracy' metric, as well as making use of all CPU 
cores for multiprocessing. It trains the model on the sent training data (X-train, y-train). It restores the best-
performing model along with the associated hyperparameters upon training. It makes predictions on the 
test data (X-test), and finally prints out the found hyperparameters as determined by the grid search, the 
classifying report showing the precision, recall, F1-score, support per class, as well as the overall best-
performing Logistic Regression's accuracy score. 

Output: 
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Table 3: Logistic Regression Results 

Logistic Regression Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.98      0.99      0.99     14217 

           1       0.99      1.00      0.99     26093 

           2       0.98      0.93      0.96      4489 

 

    accuracy                           0.99     44799 

   macro avg       0.99      0.97      0.98     44799 

weighted avg       0.99      0.99      0.99     44799 

 

 

Logistic Regression Accuracy: 0.9873434674881135 

 

Above is the table presenting the class report for the performance of the Logistic Regression model on 
three classes: class 0, class 1, and class 2. In class 0, the performance of this model had a precision of 0.98, 
the recall was 0.99, and the F1-score was 0.99 with the support of 14217 instances. Class 1 had a superb 
performance concerning precision as 0.99, perfect recall as 1.00, and F1-score as 0.99 with support in the 
form of 26093 instances. In class 2, the precision is 0.98, the recall is 0.93, so the F1-score is 0.96 with 
support in the form of 4489 instances. It is mentioned that the overall accuracy of the Logistic Regression 
is 0.99 on the support of 44799 instances in total. Macro-average F1-score is 0.98, as is the weighted-average 
F1-score on account of class imbalance, showing excellent as well as class-balanced performance in terms 
of classification. The final accuracy report for the Logistic Regression is about 0.987. 

Comparison of All Models 

The Python code compares the accuracies of three models of classification: Random Forest, Decision Tree, 
and Logistic Regression. It sets dictionaries for the best-trained classifiers, their corresponding accuracy 
scores, and their classification reports. It loops over these models, predicts on the test set (X-test), calculates 
the accuracy, and creates the classification report for each model, saving these as inputs in their 
corresponding dictionaries. It then prints the classification report for each of these models. For visualizing 
the comparisons between the accuracies, it converts the accuracy score into a pandas DataFrame before 
plotting the bar plot using seaborn, showing the accuracy for each of the models. It labels the plot as 
"Comparison of Model Accuracies" with y-lim between 0 and 1 labeled as "Accuracy Score" and x-lim 
labeled as "Models" for an optimal visual representation for comparing the overall performance of the three 
models. 

Output: 

Model Accuracy Precision Recall F1-score 

Logistic Regression 98.73% 98-99% 93-100% 96-99% 

Random Forest 98.60% 97-100% 89-100% 94-100% 

Decision Tree 100% 100% 100% 100% 
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Figure 8: Comparison of Model Accuracies 

The bar chart "Comparison of Model Accuracies" graphically displays the accuracy ratings of three 
contrasting models for classifying: Decision Tree, Random Forest, and Logistic Regression. Each of these 
is represented as a bar, with the length of the bar representing its accuracy rating on a scale of 0 and 1. The 
performance of three classifier models – Random Forest, Logistic Regression, and Decision Tree – is 
compared based on their accuracy, F1-score, recall, and precision in this table. Perfect scores on all metrics 
were recorded for the Decision Tree model, with 100% accuracy, precision, recall, and F1-score. 
Meanwhile, slightly lower overall performance values were reported for both Logistic Regression and 
Random Forest models. Logistic Regression had an accuracy of 98.73%, with values of its precision 
between 98% and 99%, recall between 93% and 100%, and F1-score between 96% and 99%. An accuracy 
of 98.60% for the Random Forest model had its precision between 97% and 100%, recall between 89% 
and 100%, and F1-score between 94% and 100%. These values reveal that the three models had excellent 
performance on this particular dataset, but the Decision Tree outperformed the others with perfect values 
for its metrics. 

VI. Applications in the USA 

The conclusions drawn from an in-depth analysis of clean electric vehicle (CEV) adoption trends and 
determinants have important practical applications in multiple areas of the United States economy. Policy 
makers, business interests, planners, and environmental regulators can use the resulting predictive models 
and determined correlations as effective tools for decision-making with greater insight as well as focused 
intervention to speed the shift towards green transit. 

Policy Support 

Sophisticated CEV adoption models' granular outputs can be directly applied in designing and 
implementing clean vehicle incentive structures at local, state, and federal levels. Knowing the particular 
socioeconomic, demographic, and geospatial drivers or impediments of adoption in specific regions allows 
policymakers to craft optimally effective incentive structures. For regionals with below-average adoption 
rates but above-average potential on other dimensions, for example, additional financial incentives such as 
higher tax credits or rebates, or non-financial rewards such as preferred parking or access to the high-
occupancy vehicle lanes may be indicated. For regions with already high rates of adoption, on the other 
hand, phasing out particular incentives gradually would allow for resources to be reassigned elsewhere 
where they can be most effective. In addition, the models can forecast the relative impact of different policy 
levers, facilitating scenario planning and optimization of resource allocation towards particular clean 
transportation objectives. This data-driven policy structure ensures that public resources are used optimally, 
as policies are crafted precisely to take on particular challenges and opportunities in diverse communities 
across the country. 
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Market Strategy Optimization: 

Sophisticated insights derived from patterns of CEV adoption provide irreplaceable value for automotive 
companies and clean technology firms working in the US market. Identifying high-value market segments 
through the intersection of socioeconomic and demographic forces enables companies to optimize their 
marketing activities, product offerings, and distribution channels. For instance, knowing consumer 
preferences and purchasing capacity across different demographic groups in particular localities can guide 
vehicle designs that include features and price points appealing to those consumers. In the same way, clean 
technology companies engaged in charging systems, battery technology, or related services can derive 
insights for pinpointing areas with substantial demand growth and craft their solutions based on that insight. 
Targeting specific areas based on data-driven detection of consumer activity and market movement enables 
companies to maximize their investments, expand their market penetration, and thereby support the growth 
of the clean vehicle market in the USA more effectively. 

Infrastructure Planning: 

Future demand for CEVs is important for successful infrastructure planning, especially for the siting of 
electric charging stations. These adoption models' predictive ability can offer city and transportation 
planners the information they require for making informed decisions about the effective siting of charging 
infrastructure, both public and private. By projecting growth in CEV ownership in various regions, planners 
can focus investments in charging sites in areas where the greatest demand is expected, for instance, in 
residential zones, office parks, shopping centers, as well as along major roadways. This forward thinking 
means that charging networks required for increasing numbers of electric vehicles on the road are in place, 
easing range anxiety and supporting higher adoption rates. In addition, this data-driven decision-making 
can direct public investment plans, ensuring resources are directed wisely towards constructing a strong, 
accessible charging network that benefits current as well as future CEV purchasers in the United States. 

Environmental Impact Monitoring:  

Monitoring CEV adoption rates is critical for measuring progress towards emissions reduction targets and 
facilitating broader sustainability planning activities. Analysis of the data and models used in assessing CEV 
adoption can supply insights into policy and program effectiveness in encouraging clean transport options. 
By measuring actual adoption rates relative to planned targets, environmental authorities and policymakers 
can gauge the effectiveness of prevailing strategies and adjust as required. In addition, this information fuels 
Environmental, Social, and Governance (ESG) reporting across public and private sector entities, enabling 
quantifiable measurement of their role in helping bring about a cleaner transportation system. Having access 
to analysis of adoption trends with corresponding environmental outcomes means it is possible to be more 
evidence-driven in sustainability planning and ensure attempts at lowering the environmental impact of the 
transport sector are measurable and supported in their pursuit of long-term environmental objectives across 
the USA. 

VII. Discussion and Future Directions in the USA 

Use of machine learning (ML) for clean electric vehicle (CEV) adoption forecasting marks the beginning 
of a new era in how the nation can comprehend and shape the sustainability of America's future 
transportation system. The advanced analysis capacity of ML algorithms creates unparalleled possibilities 
for unraveling the vast, interconnected network of variables influencing consumer choice and making 
informed predictions salient for driving the nation's green energy agenda forward. In addition, ongoing 
advancements in the availability of data as well as computing power provide promising opportunities for 
model refinement, geospatial and temporal scale-up, and enhanced synergy between policy progress and 
technological innovation, toward a cleaner, greener urban future. 

Importance of ML in CEV Forecasting: 
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Machine learning is instrumental in deciphering the dynamic and frequently non-linear patterns of 
consumer behavior at the root of CEV uptake. Conventional statistical analysis tends to be incapable of 
identifying the sophisticated interactions among multiple influencing factors like economic circumstances, 
environmental consciousness, technological progress, availability of infrastructure, and social factors. ML 
algorithms, capable of extracting complex patterns from vast pools of disparate data, are capable of 
modeling such subtle dynamics effectively. By processing historical patterns of uptake as well as an array of 
socioeconomic, demographic, and geographic variables, ML models can pinpoint faint but influential forces 
behind consumer decision-making, resulting in a richer insight into why some individuals or communities 
are more likely to take up CEVs relative to others. Such enhanced understanding of consumer decision-
making is key to formulating effective interventionist strategies aimed at stimulating wider take-up as well 
as dismantling pertinent obstacles thereto. Beyond this, the predictive analytics power of the ML platform 
is of the greatest significance in driving the progress toward U.S. green-energy objectives. Accurate 
predictions of the rate of CEV take-up allow policymakers to forecast future energy demand, prepare for 
required investments in infrastructure, and estimate the effect of different policy measures on emissions 
reductions. By providing accurate projections, the ML platform empowers stakeholders with proactive data-
driven decision-making that can drive the nation toward faster progress toward a cleaner, sustainable 
mobility sector, towards the overall environmental ambitions of the country. 

Model Enhancement Opportunities                                   

 While the existing ML models for CEV adoption forecasting are informative, there are substantial 
opportunities for improvement through the integration of richer, dynamic data streams. Adding real-time 
behavioral information, such as telematics data coming directly from networked vehicles and search volume 
on electric vehicle topics, could create a higher-resolution, timelier view of consumer demand and usage 
patterns. Telematics data, for example, could capture true-world driving patterns, charging habits, and range 
anxiety perceptions, yielding excellent insight into how CEVs are being used in reality. Similarly, 
examination of search queries on search engines as well as social media conversations could yield leading 
indicators of changing consumer attitudes and breaking trends in electric vehicle adoption. In addition, the 
addition of complete policy datasets, such as information pertinent to federal, state, and local tax credits, 
charging facility zoning regulations, and other regulations, could serve to dramatically enhance the 
predictive capability of the models. By making explicit the impact of such policy levers, the models could 
offer higher-resolution predictions on how particular policy changes would affect adoption rates in specific 
regions. Integrating these disparate, dynamic data streams would allow for the creation of higher-quality, 
responsive models that can provide even better-quality, actionable predictions. 

Geospatial and Temporal Expansion: 

For additional improvement in the practical applicability of CEV adoption forecasting, geospatial as well 
as temporal broadening of modeling activities is required. Regional modeling using geographically more 
fine-grained data, progressing beyond state-level analysis to include county, city, or neighborhood-level 
information, would provide insight into adoption drivers and obstacles at the local level. Such granularity 
would especially be useful for policy intervention at localized levels as well as planning for local 
infrastructures, where local area specifications for communities as well as the local requirements for 
infrastructures may significantly differ. 

Furthermore, longitudinally monitoring adoption trends among states as well as among geographically 
smaller units across extended durations is important in ascertaining the long-term dynamics of the CEV 
market. By observing how adoption trends adjust over time as responses to technological progress, policy 
shifts, and market trends, policymakers as well as researchers can derive important insights on the long-run 
direction of CEV adoption as well as at what points inflection may occur or possibly impending challenges 
materialize. It is in this temporal analysis that insights for developing effective as well as forward-looking 
measures can be found for facilitating the ongoing enhancement of the electric vehicle market. 

Policy-Technology Alignment 
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These insights derived from advanced ML models can potentially play an important role in shaping future 
clean energy policy in the United States. By making evidence-driven predictions about what influences CEV 
adoption, these models can assist policymakers in designing more effective and targeted incentives, 
regulations, and investments in infrastructure. For example, outputs from the models can pinpoint certain 
demographic groups or geographic areas most responsive to particular kinds of incentives, enabling more 
effective public resource allocation. Understanding the anticipated growth in CEV ownership can, in turn, 
inform the construction of grid modernization planning scenarios and energy storage solutions required for 
handling the growth in demand for electricity. Optimizing this synergy between government agencies, 
academic researchers, and industry stakeholders is necessary to unlock this potential. Interinstitutional 
sharing of data, research outcomes, and policy analysis can promote an even more holistic and informed 
response to encouraging CEV adoption. This collaborative effort can facilitate the creation of smarter, 
more effective policy through the synergy of the power of machine learning in driving the movement 
toward a cleaner, greener transportation system. 

Onwards toward a Sustainable Urban Future. Modeling for CEV adoption is important in realizing net-
zero targets for the transportation sector and sustainable urban development in the United States. By 
accurately forecasting adoption rates as well as pinpointing drivers and obstacles, these models enable 
stakeholders to make informed decisions that would foster faster transit towards electric mobility.  

By using insights derived from analysis with machine learning, policy measures can be designed, market 
strategies can be optimized, infrastructure planning can be informed, and environmental impact can be 
monitored, among other things, which are important steps towards decarbonizing the transport sector. As 
cities keep expanding and air quality as well as climate-change pressures mount, the capability of accurately 
projecting as well as driving CEV adoption will increasingly be in high demand. By tapping into the power 
of machine learning, the United States can lead the way towards an electric vehicle-dominated future, one 
where clean electric vehicles can play a major role in the attainment of national sustainability targets, as well 
as making healthier, habitable urban environments possible. 

VIII. Conclusion  

The main aim of this research was the creation of a market analysis framework based on machine learning 
for the prediction of CEV adoption. Utilizing supervised learning algorithms—Random Forest, Logistic 
Regression, and Decision Tree—the research compares their performance in segmenting prospective CEV 
adopters in terms of infrastructural, environmental, and socio-economic variables. The dataset included an 
extensive list of variables designed to capture the various factors that drive clean energy vehicle (CEV) 
adoption. It includes demographic variables like age, income, educational level, and geographical region, as 
well as economic variables like vehicle price, purchase incentives, and cost of ownership. In addition, it 
covers environmental attitudes, captured in terms of questionnaire responses on climate change concerns 
as well as sustainability values. We initiated this research using a range of machine learning models for the 
prediction of clean energy vehicle adoption, each of which was used for its particular strengths. To assess 
the performance of our predictive models, we utilized an extensive range of evaluation metrics: Accuracy, 
Precision, Recall, F1 Score, and ROC-AUC. Perfect scores on all metrics were recorded for the Decision 
Tree model, with 100% accuracy, precision, recall, and F1-score. Meanwhile, slightly lower overall 
performance values were reported for both Logistic Regression and Random Forest models. Sophisticated 
CEV adoption models' granular outputs can be directly applied in designing and implementing clean vehicle 
incentive structures at local, state, and federal levels. Knowing the particular socioeconomic, demographic, 
and geospatial drivers or impediments of adoption in specific regions allows policymakers to craft optimally 
effective incentive structures. Sophisticated insights derived from patterns of CEV adoption provide 
irreplaceable value for automotive companies and clean technology firms working in the US market. Future 
demand for CEVs is important for successful infrastructure planning, especially for the siting of electric 
charging stations. Monitoring CEV adoption rates is critical for measuring progress towards emissions 
reduction targets and facilitating broader sustainability planning activities. 
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