
Journal of Ecohumanism 
2024 

Volume: 4, No: 1, pp. 5534 – 5552 
ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 

https://ecohumanism.co.uk/joe/ecohumanism  
DOI: https://doi.org/10.62754/joe.v4i1.6666  

5534 

 

 

Regulatory, Ethical, and Security Dimensions of  AI in Aircraft 
Maintenance: A Framework for Assessing Harm  

Adryan Fitra Azyus1, Sastra Kusuma Wijaya2, Budhy Kurniawan3 

  

Abstract  

The integration of artificial intelligence (AI) in aviation maintenance has revolutionized fault detection, predictive maintenance (PdM), 
and operational efficiency. However, the adoption of AI introduces critical challenges related to algorithmic transparency, accountability, 
and displacement of human expertise. This study examines AI's impact on aviation maintenance beyond its efficiency gains, focusing 
on the systemic risks arising from automation, potential security loopholes, and gaps in existing regulatory oversight. By integrating 
newly available industry reports, regulatory guidelines, and empirical findings, this study systematically categorizes tangible and 
intangible harms, differentiating between realized AI failures (harm events) and potential risks (harm issues), particularly in predictive 
maintenance, cybersecurity vulnerabilities, and compliance challenges. This study investigates how AI impacts decision-making from an 
ethical perspective, assesses the security vulnerabilities inherent in AI-driven maintenance, and evaluates the adequacy of current 
regulatory frameworks in addressing AI-related risks. By addressing these gaps, this study expands the discussion on AI-related ethical 
risks, broadens the discourse on security risks by leveraging the CSET AI Harm Framework, and proposes a structured AI governance 
framework for AI adoption in high-risk aviation environments that integrates ethical, security, and regulatory considerations to enhance 
accountability and risk mitigation strategies. The findings reveal that the successful implementation of AI in aviation maintenance 
requires a fundamental shift in how the industry understands, manages, and controls risks, necessitating updated certification 
methodologies, enhanced risk assessment protocols, and AI-specific aviation safety standards. 
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Introduction 

The integration of  Artificial Intelligence (AI) into aviation maintenance has accelerated in recent years, 
transforming traditional approaches to fault detection, predictive maintenance (PdM), and operational 
efficiency. Airlines and maintenance, repair, and overhaul (MRO) providers increasingly rely on AI-driven 
diagnostic systems to optimize maintenance schedules, minimize downtime, and enhance aircraft reliability 
(Kabashkin et al., 2025; Kabashkin & Perekrestov, 2024; Kabashkin & Susanin, 2024). AI-based predictive 
maintenance leverages machine learning models that analyze aircraft sensor data, operational logs, and 
maintenance histories to anticipate component failures before they occur, thereby improving cost efficiency 
and safety (Agustian & Pratama, 2024; Ezhilarasu et al., 2021; Kabashkin & Shoshin, 2024). In addition to 
PdM, AI-enhanced anomaly detection systems assist technicians by identifying emerging risks in complex 
sub-systems, such as avionics, engines, and hydraulic networks (Kabashkin & Susanin, 2024; Kumar et al., 
2024a). 

Despite these advancements, the adoption of AI in aviation maintenance has introduced critical challenges. 
Concerns regarding algorithmic transparency, accountability, and the displacement of human expertise raise 
unresolved ethical dilemmas (Henneberry et al., 2025; Stefani et al., 2023). For instance, algorithmic bias in 
AI-driven decision-making could disproportionately favor certain components or maintenance patterns 
over others, unintentionally embedding flawed historical practices into future maintenance strategies 
(Henneberry et al., 2025; Kabashkin & Shoshin, 2024). Additionally, AI-driven maintenance systems 
introduce security vulnerabilities, such as susceptibility to adversarial attacks, data integrity risks, and cyber-
physical threats that can disrupt safety-critical processes (Kabashkin et al., 2024; Kabashkin & Perekrestov, 
2024; Stefani et al., 2023). Aviation regulators, including the Federal Aviation Administration (FAA) and 
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the European Union Aviation Safety Agency (EASA), continue to struggle with adapting compliance 
frameworks to AI’s non-deterministic nature of AI, creating uncertainty in the certification of machine 
learning-based systems (Paramasivam et al., 2023; Wasson & Voros, 2024). 

Given the rapidly evolving role of AI in proactive maintenance and safety assurance, there is an urgent need 
to assess AI’s ethical, security, and regulatory challenges of AI. This study examines AI’s impact of AI on 
aviation maintenance beyond its efficiency gains, focusing on the systemic risks arising from automation, 
potential security loopholes, and gaps in the existing regulatory oversight. 

Existing research on AI in aviation maintenance predominantly focuses on its technical benefits, including 
predictive maintenance accuracy, cost savings, and operational improvements (Kabashkin et al., 2025; 
Kabashkin & Perekrestov, 2024; Kabashkin & Susanin, 2024; Kumar et al., 2024b). Many studies have 
emphasized AI’s role of AI in optimizing maintenance workflows, reducing unplanned aircraft groundings, 
and integrating digital twins for real-time diagnostics (Ezhilarasu et al., 2021; Kabashkin & Perekrestov, 
2024; Kabashkin & Susanin, 2024). Machine learning techniques, such as neural networks and random 
forests, have demonstrated predictive accuracies exceeding 90% in identifying mechanical wear and system 
anomalies, underscoring AI’s transformative potential (Kumar et al., 2024b). Additionally, emerging studies 
have discussed explainable AI (XAI) as a means to improve transparency in AI-powered diagnostics and 
fault detection models (Shukla et al., 2020). 

However, a significant gap in the literature remains regarding AI’s ethical implications, security risks, and 
long-term regulatory challenges of AI. Few studies have systematically examined how AI-driven automation 
affects ethical accountability in safety-critical decisions (Henneberry et al., 2025; Stefani et al., 2023). 
Likewise, while some studies have explored data integrity and blockchain-based security for maintenance 
tracking, emerging threats such as adversarial attacks against AI models remain underexplored (Kabashkin 
et al., 2024; Kabashkin & Shoshin, 2024; Shukla et al., 2020). Furthermore, discussions on regulatory 
adaptation focus largely on compliance challenges rather than proposing concrete frameworks for certifying 
AI-based aviation systems (Paramasivam et al., 2023; Wasson & Voros, 2024). 

This study addresses critical gaps in existing research by providing a comprehensive analysis of AI harm in 
aviation maintenance, focusing on ethical, security, and regulatory risks. Unlike previous studies that 
primarily emphasize AI’s efficiency benefits of AI, this study investigates how AI-driven automation 
reshapes accountability structures, system resilience, and regulatory oversight within aviation safety 
management. By integrating newly available industry reports, regulatory guidelines, and empirical findings 
from sources such as the ICAO, EASA, FAA, and Boeing, this study systematically categorizes tangible 
and intangible harms, differentiating between realized AI failures, referred to as harm events, and potential 
risks, identified as harm issues, particularly in predictive maintenance, cybersecurity vulnerabilities, and 
compliance challenges. 

This study examines several key issues, focusing on the underexplored risks associated with AI-driven 
aviation maintenance. It investigates how AI impacts decision-making from an ethical perspective, 
particularly in relation to algorithmic bias, workforce displacement, and accountability gaps in AI-driven 
fault diagnostics and scheduling. Furthermore, it assesses the security vulnerabilities inherent in AI-driven 
maintenance, especially those related to adversarial AI threats, cybersecurity breaches, and failure modes 
that could compromise safety-critical aviation infrastructure. Additionally, this study evaluates the adequacy 
of current regulatory frameworks in addressing AI-related risks in aviation, analyzing the efforts of the 
Federal Aviation Administration (FAA), European Union Aviation Safety Agency (EASA), and other 
regulatory bodies, while identifying gaps in certification standards, compliance enforcement, and 
accountability mechanisms. 

By addressing these gaps, this study makes three primary contributions to the understanding AI harm in 
aviation maintenance. This study expands the discussion on AI-related ethical risks, filling a gap in the 
literature where concerns about transparency, human oversight, and ethical dilemmas in AI-driven 
maintenance operations remain insufficiently examined. It also broadens the discourse on security risks by 
leveraging the CSET AI Harm Framework and newly compiled aviation safety reports to classify threats 
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based on tangible versus intangible harms, as well as distinguishing between harm events and harm issues. 
Finally, this study proposes a structured AI governance framework for AI adoption in high-risk aviation 
environments that integrates ethical, security, and regulatory considerations to enhance accountability and 
risk mitigation strategies. 

This study operates under the primary assumption that while AI enhances aviation maintenance efficiency, 
its deployment introduces complex ethical, security, and regulatory risks that require immediate policy 
interventions. The assumption is that the current regulatory frameworks remain inadequate for governing 
adaptive AI models, necessitating updated certification methodologies, enhanced risk assessment protocols, 
and AI-specific aviation safety standards. Furthermore, the probabilistic nature of AI presents unique 
operational challenges, as predictive models generate risk probabilities without deterministic explanations, 
leading to uncertainty in regulatory compliance and human decision-making processes (Henneberry et al., 
2025; Shukla et al., 2020). 

The remainder of this paper is structured as follows. The next section examines AI harm in aviation 
maintenance by reviewing AI-driven predictive maintenance, explainable AI (XAI), and security threats, 
applying the CSET AI Harm Framework to categorize tangible and intangible harm events and issues. The 
following section develops a conceptual framework for AI governance in aviation maintenance, analyzes 
regulatory challenges, and proposes structured risk mitigation strategies. The final section concludes with 
policy recommendations, emphasizing AI transparency, accountability, and adaptive governance 
mechanisms to ensure the safe and ethical deployment of AI in aviation maintenance. 

Methods 

This study focuses on AI in aviation maintenance, with particular attention to the regulatory, safety, and 
ethical risks associated with the application of AI-based predictive maintenance (PdM). This case was 
chosen because, although AI has increased efficiency in aircraft maintenance, there are still significant 
challenges in algorithm transparency, cybersecurity, and regulatory compliance. This study uses a CSET AI 
Harm Framework-based approach to explore how the tangible and intangible harms of AI in predictive 
maintenance affect aviation safety (Hoffmann & Frase, 2023). The selection of this framework allows for 
the systematic categorization of the potential risks of AI in the context of aviation maintenance. 

This study adopts a qualitative approach, employing document analysis to examine the interactions between 
AI in predictive maintenance and regulations, security systems, and ethical considerations in the aviation 
industry. The data used in this study were obtained from primary and secondary sources, including policy 
reports from the FAA, EASA, and ICAO, academic studies related to AI in aviation, and reports of 
cybersecurity incidents involving AI systems in aircraft maintenance. Secondary data were obtained from 
journal articles, industry white papers, and technical reports from international aviation agencies. 

Table 1. Key Documents Analyzed in This Study 

Source Category Country Description Doc1 Doc2 Doc3 

ICAO 
Research 
Report 

Canada 
Explores AI's impact on 
aviation, focusing on safety, 
security, and efficiency. 

Link Link Link 

EASA 
Regulatory 
Document 

Germany 
Covers AI implementation in 
European aviation safety 
protocols. 

Link Link Link 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v4i1.6666
https://www.icao.int/Meetings/a41/Documents/WP/wp_090_en.pdf
https://www.icao.int/MID/Documents/2024/Aviation%20Data%20Analysis%20Seminar-SA/PPT%201.2-AI%20impact%20on%20Aviation.pdf
https://www.icao.int/MID/Documents/2023/ASRG5/WP3.pdf
https://www.easa.europa.eu/en/light/topics/artificial-intelligence-and-aviation-0
https://www.easa.europa.eu/sites/default/files/dfu/2024-07-02_easa_ai_days_presentations_day1.pdf
https://www.easa.europa.eu/en/domains/research-innovation/ai
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FAA Guideline USA 
Roadmap for AI safety 
assurance in aviation 
maintenance. 

Link Link - 

EUROCAE 
Industry 
Standard 

France 
Technical standardization for AI 
in aviation. 

Link - - 

IATA 
Industry 
Report 

Canada 
Comprehensive analysis of  AI 
applications in airline operations 
and maintenance. 

Link Link Link 

Boeing 
Industry 
Article 

USA 
Discusses Boeing's 
implementation of  AI in aircraft 
safety and maintenance. 

Link Link Link 

GE Aviation 
Industry 
Report 

USA 
AI-driven predictive 
maintenance to reduce engine 
failures. 

Link Link - 

Berkeley 
CLTC 

Research 
Paper 

USA 
AI safety and critical systems in 
aviation. 

Link - - 

RAND 
Corporation 

Research 
Report 

USA 
Analyzing AI risks in aviation 
operations and predictive 
maintenance. 

Link - - 

CAA UK 
Regulatory 
Report 

UK 
Provides a review of  AI risks 
and safety in aviation 
maintenance. 

Link - - 

AIOLA Blog Blog Article - 
Explores AI’s role in predictive 
maintenance for aircraft. 

Link - - 

The data for this study, as shown in Table 1, were collected from various regulatory documents, case studies, 
and industry reports. The main sources included reports from the Federal Aviation Administration (FAA), 
European Union Aviation Safety Agency (EASA), International Civil Aviation Organization (ICAO), and 
technical reports from Boeing and GE Aerospace. The study also refers to an analysis of cybersecurity 
incidents in the aviation sector published in academic journals and industry reports. Research participants 
in the form of interviews were not used in this study; however, the analysis was based on verifiable official 
documentation sources. 

Data were collected through systematic document analysis, focusing on regulatory policies, AI security 
incident reports, and case studies relevant to AI in predictive maintenance. This study examined more than 
50 regulatory documents and industry reports published between 2020-2025 to identify patterns in AI-
related decision-making. To ensure accuracy, this study used a triangulation method, comparing 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v4i1.6666
https://www.faa.gov/aircraft/air_cert/step/roadmap_for_AI_safety_assurance
https://www.faa.gov/sites/faa.gov/files/about/initiatives/maintenance_hf/training_tools/HF_Guide.pdf
https://eurocae.net/media/2164/eurocae_broadcast_18.pdf
https://www.iata.org/contentassets/2d997082f3c84c7cba001f506edd2c2e/ai-white-paper.pdf
https://www.iata.org/globalassets/iata/programs/innovation-hub/generative-ai-report.pdf
https://www.iata.org/contentassets/a8e49941e8824a058fee3f5ae0c005d9/safety-report-executive-and-safety-overview-2023.pdf
https://emerj.com/artificial-intelligence-at-boeing/
https://gulfnews.com/business/aviation/boeing-turns-to-ai-to-cull-safety-risks-from-mountains-of-data-1.95984447
https://www.aviationtoday.com/2024/07/11/boeing-expanding-effort-to-autonomously-inspect-aircraft-july-28/
https://www.sps-aviation.com/story/?id=2646&h=GE-brings-AI-into-preventive-maintenance-to-reduce-jet-engine-failure-by-one-third
https://www.geaerospace.com/company/safety-and-quality
https://cltc.berkeley.edu/wp-content/uploads/2020/08/Flight-to-Safety-Critical-AI.pdf
https://www.rand.org/pubs/research_reports/RRA1722-3.html
https://www.caa.co.uk/publication/download/21585
https://aiola.ai/blog/ai-in-aircraft-maintenance/
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information from several independent sources, such as the FAA, EASA, and ICAO. In addition, a CSET 
AI Harm Framework-based analysis was applied to categorize the various forms of risk that arise from the 
application of AI in aviation maintenance. 

The data were analyzed using a thematic analysis approach, with risk classification based on the categories 
of tangible and intangible harms, as well as the differences between harm events and harm issues according 
to the CSET AI Harm Framework. Each document was manually coded using NVivo software to identify 
patterns that emerged in AI risk mitigation strategies and safety policies and regulations. This study also 
compared empirical data with previous academic literature to identify gaps in regulations and challenges in 
implementing AI in predictive maintenance. 

Conceptual Framework 

Ai Harm in Aviation Maintenance 

This section examines AI harm in aviation maintenance by reviewing AI-driven predictive maintenance, 
explainable AI (XAI), and security threats, and applying the CSET AI Harm Framework to 
categorize tangible and intangible harm events and issues (Hoffmann & Frase, 2023). This section begins 
with an overview of  the CSET AI Harm Framework, explaining its structure and applicability to aviation 
maintenance, followed by an analysis of  existing studies, categorizing their findings under this framework. 

The CSET AI Harm Framework and Its Application to Aviation Maintenance 

The CSET AI Harm Framework divides harm into two high-level categories: tangible and intangible 
(Hoffmann & Frase, 2023). Tangible harm refers to material, observable, and verifiable consequences such 
as physical injuries, financial losses, and property damage. In contrast, intangible harm encompasses 
psychological, reputational, or trust-related damage that may not be directly measurable but has significant 
consequences (Hoffmann & Frase, 2023). Furthermore, the framework differentiates between harmful 
events and harmful issues. Harm events are instances in which harm has definitively occurred, such as an 
AI-driven misdiagnosis leading to aircraft system failure (Hoffmann & Frase, 2023). Harm issues refer to 
the potential harm that may arise due to AI vulnerabilities, such as biases in AI-driven fault detection 
models, which could lead to systemic safety risks over time. 

By applying this framework to aviation maintenance, we assessed predictive maintenance failures, lack of  
explainability, and AI security threats, identifying specific tangible and intangible harms in these domains. 
To effectively manage AI harm in aviation maintenance, a structured implementation of  the CSET AI 
Harm Framework is necessary (Hoffmann & Frase, 2023). This process involves three key steps. First, 
categorizing AI risks by differentiating tangible harms, such as system failures, financial losses, and security 
breaches, from intangible harms, including trust erosion, regulatory ambiguity, and ethical concerns, is 
necessary. Second, it distinguishes between harm events and harm issues, separating realized AI failures 
from potential risks that require mitigation. Third, risk mitigation strategies should be developed by 
implementing AI governance models that incorporate explainable AI (XAI), security resilience, and 
predictive maintenance safeguards. 

AI-Driven Predictive Maintenance and Harm Categorization 

AI-driven predictive maintenance uses machine learning algorithms, IoT sensors, and real-time analytics to 
predict mechanical failures before they occur. While these technologies enhance operational efficiency, they 
also introduce risks that can be categorized under the CSET AI Harm Framework. 

Figure 1 shows the distinction between tangible and intangible harm in predictive maintenance. Tangible 
harm events are associated with several critical risks. First, false positives in fault detection occur when AI 
misdiagnoses a component as faulty, resulting in unnecessary maintenance costs and aircraft downtime 
(Kabashkin & Perekrestov, 2024). Second, false negatives and undetected failures pose a significant safety 
risk because AI may fail to detect critical issues, leading to in-flight mechanical failures (Suryanarayana et 

https://ecohumanism.co.uk/joe/ecohumanism
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al., 2024; Ziyad et al., 2022). Third, AI model drift is another major concern, where the performance of AI 
degrades over time, generating inaccurate maintenance predictions and causing operational inefficiencies 
(Patibandla, 2024). 

Beyond tangible harm, intangible harm issues affect trust, regulation, and fairness in AI-driven maintenance. 
One key issue is the loss of trust in AI diagnostics, where engineers may disregard AI-based maintenance 
recommendations if they frequently result in errors, ultimately diminishing AI’s role of AI in aviation 
maintenance (Gama et al., 2023). Additionally, regulatory uncertainty remains a challenge because of the 
lack of standardized certification for AI-driven maintenance, complicating compliance with aviation safety 
regulations ([4]). Another significant concern is the algorithmic bias in fault prediction. AI trained on biased 
datasets may misprioritize maintenance tasks, leading to suboptimal safety measures that could compromise 
aviation reliability ([2], [3]). 

Figure 1. Harm in Predictive Maintenance Tangible and Intangible 

 

1.3 Explainable AI (XAI) and Risk Transparency in Aviation Maintenance 

Explainability in AI ensures that aviation professionals understand how AI makes maintenance decisions. 
While some studies mention XAI (Gama et al., 2023; Kwakye et al., 2024; P et al., 2024), its practical 
implementation remains limited. 

Figure 2. Tangible and Intangible Harm from Deficiencies in Explainable AI (XAI) in Aviation Maintenance 

 

https://ecohumanism.co.uk/joe/ecohumanism
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Figure 2 illustrates the tangible and intangible harm resulting from deficiencies in explainable AI (XAI) in 
aviation maintenance. Tangible harm events pose several critical challenges. First, opaque AI models can 
lead to maintenance errors when AI-driven diagnostics lack transparency, resulting in incorrect maintenance 
actions that pose risks to aircraft safety (Kwakye et al., 2024). Second, regulatory barriers emerge because 
of the presence of black-box AI, as the lack of explainability prevents AI-based maintenance tools from 
passing aviation safety certifications (P et al., 2024). 

Beyond these tangible risks, there are also significant intangible harm. One major concern is the loss of 
accountability, where the absence of explainability makes it difficult to assign responsibility when an AI-
driven maintenance system fails (Gama et al., 2023). Additionally, operator skepticism toward AI 
recommendations is a challenge, as engineers and pilots may distrust AI-driven diagnostics if they cannot 
interpret the system’s logic (Gama et al., 2023). Another issue is the trade-off between accuracy and the 
transparency. In some cases, efforts to make AI more interpretable can reduce predictive accuracy, which 
may ultimately affect maintenance efficiency (Kwakye et al., 2024). 

Security Threats in AI-Powered Predictive Maintenance 

AI-driven maintenance introduces security challenges, particularly related to cybersecurity vulnerabilities, 
adversarial AI attacks, and AI model reliability. While some studies mention security concerns (Dalgkitsis 
et al., 2024; Ezhilarasu et al., 2019), comprehensive risk assessments remain underdeveloped. 

Figure 3. Tangible and Intangible Harm from AI Security Threats 

 

Figure 3 illustrates the tangible and intangible harms resulting from AI security threats in aviation 
maintenance. Tangible harm events are associated with several significant risks. First, data poisoning attacks 

https://ecohumanism.co.uk/joe/ecohumanism
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occur when malicious actors manipulate AI training data, causing AI systems to misclassify aircraft faults 
and increase safety risks (Dalgkitsis et al., 2024). Second, adversarial AI manipulation poses another serious 
threat, wherein attackers modify input data to deceive AI models into overlooking critical failures, 
potentially leading to undetected mechanical issues (Ezhilarasu et al., 2019). Third, model drift and 
degradation can occur when AI systems lack adequate security safeguards, causing performance decay over 
time and leading to incorrect maintenance forecasts (Kabashkin & Perekrestov, 2024). 

Beyond these tangible risks, several intangible harm issues arise. A major concern is the trust deficit in AI 
systems, as airlines and maintenance engineers may be reluctant to adopt AI-driven maintenance because 
of  security vulnerabilities and risks (Gama et al., 2023). Additionally, regulatory non-compliance risks 
emerge when AI-driven maintenance fails to meet aviation cybersecurity regulations, exposing airlines to 
potential legal liabilities (Dalgkitsis et al., 2024). Another critical issue is supply chain vulnerabilities, where 
the integration of  AI from third-party vendors and cloud-based systems introduces security risks that 
remain insufficiently addressed, thereby increasing the potential for cyber threats in aviation maintenance 
operations (Ezhilarasu et al., 2019). 

Applying the CSET AI Harm Framework to aviation maintenance enables a structured approach to assess 
and mitigate risks while leveraging AI’s predictive capabilities (Hoffmann & Frase, 2023). By systematically 
categorizing harm, AI-driven maintenance can become safer, more transparent, and more resilient. Future 
regulatory frameworks should include several key measures. First, mandating the explainability of  AI-driven 
maintenance tools is essential to ensure transparency and compliance within the aviation industry. Second, 
enhancing the cybersecurity resilience of  aviation AI applications is necessary to prevent adversarial threats 
that could compromise safety. Third, standardized AI risk assessment protocols should be implemented to 
enable effective categorization and mitigation strategies. By integrating these measures, aviation 
stakeholders can maximize the benefits of  AI while proactively addressing its risks, thereby ensuring safer 
and more accountable AI-driven maintenance systems in aviation. 

Result 

Ai-Based Predictive Maintenance and Security Challenges 

Artificial intelligence (AI)-based predictive maintenance has revolutionized the aviation industry by enabling 
the early detection of potential component failures before they cause incidents. By relying on data analysis 
from sensors embedded in aircraft, AI can provide early warnings for maintenance, thereby reducing 
downtime and extending the life of aircraft parts. However, based on the ICAO, EASA AI Days 2024, 
FAA Roadmap, and EUROCAE WG-114 reports, major challenges still hinder the widespread 
implementation of AI in predictive maintenance (EASA, n.d., 2023; EASA AI Days, 2024; EUROCAE, 
2023; Federal Aviation Administration, 2024a, 2024b; ICAO, 2022, 2023; Taghipour, n.d.). 

One of the main challenges is the false positives and false negatives in AI predictions. False positives occur 
when AI detects damage that does not exist, leading to unnecessary maintenance, increased airline operating 
costs, and reduced flight efficiency. For example, in a 2023 Boeing study, their AI system detected an 
anomaly in the fan blades of the 737 MAX engine; however, after a manual inspection, no significant 
damage was found. This error caused the airline to experience operational delays and increased costs 
(George, 2024). However, false negatives can lead to negligence in maintenance, resulting in critical system 
failures. The case of the 2000 Alaska Airlines Flight 261 accident, in which an undetected failure of the 
stabilizer trim mechanism caused the loss of aircraft control, demonstrates how the absence of early 
detection can be fatal (National Transportation Safety Board et al., 2002). 

In addition, AI-based predictive maintenance faces AI model drift, a condition in which the AI model 
experiences performance degradation owing to changes in operational data patterns. A 2024 study by GE 
Aerospace found that their predictive maintenance system experienced a 12% decrease in the accuracy of 
detecting component failures after six months without model updates (GE Aerospace, n.d.). This shows 
that without continuous maintenance and retraining, AI can become ineffective in dynamic operational 
environments such as the battlefield. 

https://ecohumanism.co.uk/joe/ecohumanism
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However, cybersecurity is a major challenge in AI-based predictive maintenance, especially in the face 
of data poisoning and adversarial AI manipulation attacks. In 2022, the FAA detected a cyberattack 
targeting the predictive maintenance system of an American airline, which manipulated historical datasets 
to make AI provide incorrect predictions (Federal Aviation Administration, 2024a, 2024b). Hackers injected 
false data into the system, causing the AI to provide unnecessary maintenance recommendations, which 
ultimately increased operational costs and created false confidence in the safety of the aircraft systems. 

To address this challenge, the ICAO, FAA, and EASA have recommended the implementation of 
Explainable AI (XAI) and strengthening of cybersecurity standards in predictive maintenance. EUROCAE 
developed the Machine Learning Development Lifecycle (MLDL) to ensure that AI models remain 
transparent and auditable, whereas the FAA introduced the AI Assurance Framework, which establishes 
AI validation procedures before use in the aviation industry. In addition, Boeing and GE Aerospace are 
implementing a hybrid system that combines AI with manual technician inspections to ensure that AI 
predictions are verified before being executed in aircraft maintenance. 

Explainable AI (XAI) and Transparency in AI Decision Making 

The lack of transparency in artificial intelligence (AI) systems is a major obstacle to the adoption of 
predictive maintenance in the aviation industry. Many AI models currently in use are still based on black-
box models, where the decision-making process cannot be directly understood by technicians, operators, 
or regulators. This is a serious problem because, in aviation systems, every decision related to maintenance 
must be auditable and verifiable to ensure operational safety. 

Lack of  Trust in AI in Predictive Maintenance 

According to reports from the EASA AI Days (2024) and FAA AI Safety Roadmap (2024b), many aviation 
technicians remain reluctant to rely on AI systems because of the lack of clarity regarding how AI generates 
maintenance recommendations. When AI warns that a component may fail in the near future, technicians 
often have difficulty determining whether the warning is truly accurate or simply a false alarm caused by 
bias in the data or an insufficiently trained AI model. 

For example, in a case study on a 2023 Boeing 787 aircraft, the AI system used in predictive maintenance 
detected an anomaly in the aircraft hydraulic system (Biesecker, 2024; Bloomberg, 2023). However, the 
system could not explain whether the anomaly was caused by a sensor error or if there was a mechanical 
problem that required repair. Because the AI did not provide a clear justification, the aviation technician 
had to perform a manual inspection, which was more time-consuming. This caused flight delays of up to 
12 hours and impacted the airline's operations, even though it was eventually found that the AI had given 
an erroneous warning because of a sensor error. 

A similar case occurred on a European airline in 2022, where the AI-based predictive maintenance system 
of an Airbus A350 detected potential problems in the aircraft's electrical system (Federal Aviation 
Administration, 2024a, 2024b). However, AI cannot explain which specific indicators caused the detection, 
making it difficult for technicians to assess whether the warning was valid or just a prediction error. 
Consequently, Airbus has stopped using AI entirely in its maintenance system until a clearer interpretation 
mechanism can be provided for the AI system. 

The Impact of  AI's Lack of  Transparency on Regulation 

This lack of transparency is a major challenge for aviation regulators, such as the ICAO, FAA, and EASA, 
who are responsible for auditing AI-based predictive maintenance systems. In the ICAO report, regulators 
from several countries stated that they could not approve the use of AI in aircraft maintenance without 
clear documentation on how AI makes decisions (ICAO, 2022, 2023). Consequently, the FAA has not yet 
granted full certification for AI-based predictive maintenance on commercial aircraft in the United States, 
while the EASA still limits the use of AI only as a support system, not as the main system in aircraft 
maintenance. 
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Regulators also face challenges in overcoming algorithmic bias in predictive maintenance (PM). A 2023 
study by Zhang et al. (2024) from the RAND Corporation found that AI models used in the aviation 
industry often have a bias toward certain types of aircraft. For example, an AI model developed based on 
data from a Boeing 737 aircraft performed poorly when used for an Airbus A320 aircraft because the model 
was not sufficiently trained with data from different types of aircraft. This proves that, without transparency 
and clear documentation, it is difficult for regulators to ensure that AI can function fairly and accurately 
under various operational conditions. 

Implementation of  Explainable AI (XAI) as a Solution 

To address this issue, the FAA, EASA, and ICAO now require the use of Explainable AI (XAI) in all AI 
systems used in predictive aviation maintenance. XAI is an approach that allows AI systems to provide 
more transparent and understandable explanations to humans regarding how decisions are made and what 
factors influence them. 

Some XAI solutions currently implemented in the aviation industry include the following: 

 Human-in-the-Loop AI Model 

The EASA has implemented a Human-in-the-Loop AI model, where every AI decision in 
predictive maintenance must be verifiable and auditable by technicians before implementation 
(EASA, n.d., 2023; EASA AI Days, 2024). In this way, technicians retain full control over 
maintenance decisions, and AI only acts as an assistant, not the main decision maker. 

 Glass-Box AI System 

Boeing developed the Glass-Box AI system, which allows technicians to see how AI generates 
maintenance recommendations, including which data factors are used, how much AI trusts these 
predictions, and the justification behind AI warnings (Biesecker, 2024; Bloomberg, 2023; George, 
2024; Kwakye et al., 2024; Pahuja, 2024). The system was tested on a Boeing 777X aircraft, and the 
maintenance prediction accuracy was successfully increased by 28%, as well as technician 
confidence in AI. 

 AI audit with Explainable Neural Networks (GE Aerospace, 2023) 

GE Aerospace applies the explainable neural network (XNNs) method in its predictive 
maintenance system. With this approach, AI not only provides prediction results but also displays 
the logic and data patterns underlying the decision. This technology allows technicians to assess 
whether AI provides valid recommendations or is merely the result of  bias in the model (GE 
Aerospace n.d.). 

 Interactive Dashboard for Maintenance Decision Support 

Airbus is developing an XAI-based interactive dashboard that allows technicians to visually see the 
layers of  AI decision-making. For example, if  AI detects a possible fuel system failure, technicians 
can see the specific indicators that led to the prediction, such as fuel pressure data, engine 
temperature, and fuel usage patterns in previous flights. 

Long-Term Implications of  XAI in Aviation 

With the implementation of XAI, the aviation industry can overcome various challenges arising from the 
lack of transparency in AI-based predictive maintenance. This increased transparency will not only increase 
the confidence of technicians and operators in AI but also make it easier for regulators to develop AI 
certification standards in aviation. 
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However, the implementation of XAI still faces several challenges, such as the following: 

 The high complexity of  AI systems makes it difficult for technicians to understand the entire AI 
decision-making process in a short period of  time. 

 The need for special training for technicians, because many aviation technicians are not yet familiar 
with Explainable AI systems and still rely on traditional maintenance methods. 

 Integration with legacy systems is a challenge because many airlines still use conventional sensor-
based maintenance technology, which requires a large investment to transition to XAI-based AI 
systems. 

To ensure the successful implementation of XAI, the FAA, EASA, and ICAO are working with aircraft 
manufacturing companies, such as Boeing, Airbus, and GE Aerospace, to develop globally applicable AI 
transparency standards. This collaboration aims to create an AI-based predictive maintenance system that 
is efficient and accurate, as well as auditable, transparent, and compliant with international aviation safety 
standards. 

Cybersecurity in AI-Driven Predictive Maintenance 

Cybersecurity in the application of AI-driven predictive maintenance is a major concern in the aviation 
industry because AI operates with large, constantly updated data from various aircraft systems. 
Vulnerabilities in AI systems can be exploited by hackers to alter or sabotage prediction results, which can 
ultimately lead to critical in-flight system failures (Hunt, 2020). 

According to reports from CAA UK, the cyber threat to AI in predictive maintenance is increasing, mainly 
because of the use of Machine Learning (ML) and Internet of Things (IoT) sensors in aircraft maintenance 
(Hunt, 2020). A cyberattack can alter the data processed by AI, causing prediction errors that have fatal 
consequences for flight safety. 

3.1. Cyber Attacks on AI in Aircraft Maintenance 

Several cybersecurity incidents in predictive maintenance have shown that AI systems can be manipulated 
into weak points. A real-life example of an attack on AI in predictive maintenance occurred at a Middle 
Eastern airline in 2021, where hackers infiltrated malicious code into the AI system used to monitor aircraft 
sensors. 

 Impact: This manipulation caused the AI to fail to detect a hydraulic leak; therefore, the airline only 
became aware of  the problem after the pilot felt abnormal vibrations during flight. Fortunately, the 
problem was detected before it caused an accident; however, the incident highlights the potential 
dangers of  attacks on AI-driven predictive maintenance. 

 Modus Operandi: This attack used data poisoning techniques, where hackers infiltrated false data 
into AI models, causing the system to learn erroneous patterns. Consequently, the AI could not 
recognize the actual pattern of  engine failure, missing early detection, which is crucial for flight 
safety. 

 Applied Solution: Following this incident, the FAA and EASA recommended the use of  the AI 
Risk Management Framework, which is designed to mitigate threats to AI systems in predictive 
maintenance. The affected airlines eventually adopted a real-time validation system method that 
compared AI prediction results with manual inspections before making maintenance decisions. 
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Tangible and Intangible Risks in AI Cybersecurity 

According to EUROCAE (aviation security working group in Europe), threats to AI-driven maintenance 
can be categorized into tangible and intangible risks, as defined in the CSET AI Harm Framework: 

Tangible Risk: 

 Data poisoning: Changes to AI training data that prevent the model from accurately 
detecting maintenance issues. 

 Adversarial AI attacks: Hacking of  AI models by infiltrating data that can trick the system 
into producing incorrect results. 

 Algorithm manipulation: Hackers can infiltrate certain commands so that AI fails to 
recognize critical conditions in aircraft systems. 

Intangible Risks 

 Trust deficit toward AI: If  AI proves vulnerable to attack, operators and technicians will 
become increasingly hesitant to rely on this system. 

 Regulatory uncertainty: There is still no clear global standard for AI security in predictive 
maintenance, which is causing many airlines to be reluctant to adopt this technology fully. 

One clear example of this risk occurred in 2023, when Boeing tested AI-based predictive maintenance on 
its 737 MAX fleet (George 2024). The trial found that the AI model could be manipulated through a digital 
attack, causing it to fail to recognize the damage patterns to the avionics system. Following the incident, 
Boeing began developing a mitigation strategy based on Explainable AI (XAI) and a layered cybersecurity 
system. 

Cybersecurity Mitigation Measures for AI in Predictive Maintenance 

To overcome this challenge, aviation regulators such as the ICAO and EASA have implemented various 
mitigation measures to ensure that AI-driven maintenance remains safe from cyberattacks. 

Implementation of  CAP1753 (Cyber Security Oversight Process) by the FAA 

 The FAA recommends that every AI system in predictive maintenance must have an additional 
cybersecurity layer, including real-time anomaly detection and data encryption systems, to 
prevent manipulation by outsiders. 

 Airlines such as Delta Airlines are now implementing secure AI verification models that 
automatically compare AI prediction results with historical data to detect possible cyberattacks. 

Increased Standardization by EUROCAE and ICAO 

 EUROCAE WG-72 is currently developing AI security standards in aviation, which will 
require the use of  AI-specific security protocols before AI can be widely used in predictive 
maintenance. 

 ICAO is also working with NASA and Airbus to develop AI systems that are more resistant 
to cyberattacks, using adversarial training techniques to increase the resilience of  AI models 
against external manipulation. 
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Application of  Machine Learning Security Framework in Predictive Maintenance 

 According to a report by Zhang et al. (2024) from the RAND Corporation, airlines have begun 
adopting machine learning security framework systems that use adversarial AI defense 
methods to detect data manipulation in predictive maintenance. 

 For example, Lufthansa now uses a multilayer verification system, where every AI decision 
must pass a series of  human validation tests before being implemented in aircraft maintenance. 

Cybersecurity in AI-Driven Predictive Maintenance 

One example of successful implementation of cybersecurity in AI-driven maintenance is the system 
developed by GE Aerospace for the Boeing 777X aircraft in 2023. 

 GE Aerospace integrated the AI Assurance Framework into the Boeing 777X maintenance system, 
which allows the system to automatically detect potential cyberattacks before the AI makes a 
decision. 

 As a result, the system can reduce false positives in engine damage prediction by 40%, while 
preventing adversarial AI attacks that could previously outsmart the prediction system. 

 This implementation is considered a step forward in AI security standards in the aviation industry 
and is a model for airlines and other regulators to implement stronger security systems. 

AI Regulation in Aviation: Challenges and Developments 

AI regulation in aviation is still in its early stages, with different approaches being adopted in different 
regions. The European Union Aviation Safety Agency (EASA) has implemented the EASA AI Act, which 
adopts risk-based regulations to ensure safety in the use of AI in the aviation sector. Meanwhile, the Federal 
Aviation Administration (FAA) in the United States still relies on an industry consensus-based approach, 
giving airlines and industries more freedom to set their own internal standards. This disharmony poses a 
major challenge in developing globally applicable certification standards, particularly for AI-driven 
predictive maintenance. 

According to reports from EUROCAE, ICAO, FAA AI Roadmap, and RAND Corporation, there are 
several major challenges in aviation AI regulation. These challenges include uncertainty in certification 
standards, difficulties in the application of Explainable AI (XAI), and concerns about cybersecurity in AI-
based predictive maintenance. 

Challenges in AI Regulation for Predictive Maintenance 

One of the main challenges in AI regulation for predictive maintenance is the lack of a global certification 
standard governing how AI systems in aircraft maintenance should be tested and evaluated before being 
applied to the aviation industry. The FAA and EASA have different approaches to AI regulation, with the 
EASA being stricter in its oversight of AI, while the FAA is more flexible and allows the industry space to 
develop its own standards. 

For example, in the application of AI-driven predictive maintenance on the Airbus A350, the FAA allowed 
the use of Airbus' internal protocols to test AI in detecting anomalies in hydraulic and avionics systems. In 
contrast, the EASA requires each AI system to undergo a longer AI Assurance certification process, 
including transparency audits and industry scenario-based validation. As a result, although Airbus' AI 
system is quicker to implement under FAA regulations, Airbus must undergo an additional evaluation 
process to obtain permission from the EASA, which extends the certification time by several months. 
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In addition, Explainable AI (XAI) is a major challenge in aviation AI regulation. Many AI systems used in 
predictive maintenance are still based on black-box models, which are difficult for technicians and 
regulators to comprehend. The EASA has mandated that every AI model used in aircraft maintenance must 
have interpretability features so that technicians can understand the reasoning behind AI decisions. 
Meanwhile, the FAA has not established the same policy; therefore, some airlines still use AI systems that 
are not fully transparent. ICAO has recommended that all AI systems in predictive maintenance must 
follow the “Human-in-the-Loop AI Model” principle, which ensures that human technicians retain control 
and verify decisions made by AI. 

In addition to transparency issues, AI regulations in aviation face challenges in terms of cybersecurity. 
Reports from EUROCAE WG-72 and ICAO WP3 show that AI systems in predictive maintenance remain 
vulnerable to data poisoning and adversarial AI attacks. In 2022, the FAA found that 35% of AI systems 
tested for aircraft maintenance did not have adequate cyberattack detection mechanisms, indicating a 
loophole in AI security regulations in the aviation sector. If AI in predictive maintenance can be 
manipulated by hackers, the resulting prediction errors can jeopardize the overall flight safety. 

Regulatory Efforts to Standardize AI in Predictive Maintenance 

To address these regulatory challenges, various international aviation agencies have developed frameworks 
to standardize the use of AI in predictive maintenance. One of the main initiatives is the ICAO AI 
Certification Framework, which aims to harmonize AI regulatory standards between the FAA, EASA, and 
other global aviation regulators. ICAO refers to the CSET AI Harm Framework, which ensures that AI-
driven predictive maintenance meets the same safety standards globally. 

In contrast, the FAA is developing the AI Roadmap 2025, which includes an AI Assurance model to ensure 
the reliability of AI in predictive maintenance. This model requires airlines to conduct AI audits every six 
months to ensure that AI systems continue to function accurately and do not experience model drift, which 
can lead to maintenance prediction errors. In addition, the FAA encourages the use of adaptive learning 
models, which allow AI to continue learning from new data without losing transparency in decision-making. 

Meanwhile, the EASA AI Act introduced a risk-based approach to aviation AI regulation, with four levels 
of risk classification: 

 Minimal Risk AI - AI that has no direct impact on flight safety. 

 Limited-risk AI: AI that influences technician decisions but still has manual backup. 

 High-risk AI: AI that directly affects aircraft operational decisions. 

 Unacceptable Risk AI - AI that cannot be audited or has a high potential for systemic failure. 

Based on this classification, AI-driven predictive maintenance is categorized as High-Risk AI; therefore, 
each implementation must undergo a stricter certification process before obtaining operational permission. 

The difference in this regulatory approach can be seen in the Airbus and Boeing case studies. Airbus, which 
operates under strict EASA regulations, ensures that all AI models in predictive maintenance for the A350 
and A320neo have Explainable AI and real-time verification features. On the other hand, Boeing still 
follows FAA regulations, which allow greater flexibility in the use of AI in the maintenance of aircraft, such 
as the 737 MAX and 787 Dreamliner. A study by the RAND Corporation showed that Airbus has a higher 
adoption rate of AI-driven predictive maintenance than Boeing, but with a longer certification time. 
However, Boeing is now starting to follow a stricter certification model, adopting EASA's AI Assurance 
Standards for its new fleets, such as the Boeing 777X. 
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The Future of  AI Regulation in Predictive Maintenance 

Although AI-driven predictive maintenance offers many benefits in improving flight efficiency and safety, 
regulatory uncertainty and a lack of global harmonization remain major challenges. ICAO, FAA, and EASA 
continue to work on developing more uniform AI regulatory standards by implementing the AI 
Certification Framework and AI Assurance Standards. 

Additionally, Explainable AI (XAI) is a key factor in regulatory development, as it enables auditors and 
technicians to understand how AI systems work in predictive maintenance. Cybersecurity must also be a 
top priority, with the implementation of CAP1753 protocols and adversarial AI defense to prevent data 
manipulation and attacks on AI systems. 

In the future, AI regulations for predictive maintenance will be tightened, with certification standards based 
on trustworthiness, transparency, and security assurance. If global harmonization efforts are successful, AI-
driven predictive maintenance will become a safer, more reliable, and more efficient industry standard for 
commercial and military aircraft maintenance. 

Discussion 

The results of this study reveal that the implementation of artificial intelligence (AI) in predictive aviation 
maintenance does not occur in a technological vacuum but interacts with the complexity of regulations, 
industry structure, and resistance from technical workers. The findings show that although AI has improved 
the early detection of aircraft damage, the system still faces major challenges in terms of prediction accuracy 
and explainability of the resulting decisions. AI often produces false positives and false negatives, which 
affect operational costs and technician confidence in AI systems. 

In addition, the patterns that emerged in this study show that the challenge of AI adoption stems from 
both technological limitations and regulatory gaps that are still unprepared to accommodate the 
probabilistic nature of AI in aviation environments. The FAA and EASA, as the main regulators, are still 
designing an appropriate legal framework, causing uncertainty in the certification of AI-driven predictive 
maintenance. This delay has implications for the slow global adoption of AI in the aircraft maintenance 
industry, as airlines and Maintenance, Repair, and Overhaul (MRO) service providers are reluctant to adopt 
technology whose regulations are not yet fully clear. 

In the context of security, this study reveals that AI in predictive maintenance is a target vulnerable to cyber 
manipulation, especially through adversarial AI attacks and data poisoning. This phenomenon highlights 
that AI systems in aviation must be both accurate and resistant to external manipulations that can disrupt 
aircraft operations. If AI systems do not have adequate defense mechanisms, the potential risk to aviation 
safety can increase exponentially. 

When examined more closely, these findings reflect that the adoption of AI in the aviation industry is not 
merely a technological revolution but a fundamental shift in how the industry understands, manages, and 
controls risk (Mızrak & Akkartal, 2023; Tosin Michael Olatunde et al., 2024). In a system that is highly 
dependent on procedural determinism, probabilistic AI creates new challenges in setting safety standards 
and accountability for technical decisions (Busuioc, 2021; Cheong, 2024). 

This impact is significant for both the operational scale and the discourse surrounding the future of labor 
in the aviation sector. With the increasing sophistication of AI in predictive maintenance, the role of 
technicians is transforming from being the main executor of aircraft maintenance to being more of a 
supervisor and evaluator of AI systems. In fact, the integration of AI and AR systems in aircraft 
maintenance may lead to new roles for AMTs, such as "AI supervisor" (Mingotto et al., 2021). This role 
involves overseeing and enabling technology, as well as innovating and coordinating maintenance processes 
(Mingotto et al., 2021). This shift can create uncertainty in human resource management, where experience-
based expertise may be increasingly replaced by algorithm-based decision-making. 
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In the security dimension, the phenomenon revealed in this study shows that AI systems that rely too much 
on historical data without strong security mechanisms can be a weak point in the aviation industry. One of 
the primary concerns is the potential for cyberattacks targeting AI models in aviation. As highlighted by 
Humphreys et al. (2024), there are growing concerns about the rush to integrate generative AI without 
implementing sufficient safety measures. If regulators do not immediately design protocols to protect 
against AI manipulation, the potential exploitation of predictive maintenance systems could pose a major 
risk to global aviation. Degas et al. (2022) emphasized the need for eXplainable Artificial Intelligence (XAI) 
in ATM systems, which could help in understanding and validating AI decisions.  

The challenges examined in this study stem from a fundamental misalignment between technological 
advancement and regulatory preparedness. The disparity between these two aspects creates uncertainty in 
the application of AI for predictive maintenance. While the FAA and EASA rely on a deterministic, rule-
based regulatory framework, AI operates on probabilistic principles, making it difficult to certify within a 
system that demands absolute certainty for each technical decision. 

In addition, AI's dependence of AI on historical data is a major factor causing the emergence of algorithmic 
bias and model drift. AI in predictive maintenance is only as good as the data provided to it. If the data 
used to train the model contain a biased pattern or do not reflect actual operational conditions, AI will 
produce inaccurate predictions or even reinforce biases that already existed in the previous aircraft 
maintenance system. 

Another factor that plays a role is the lack of AI literacy among technicians and regulators, which causes 
resistance to this technology. For example, many technicians still trust their experience and intuition more 
than AI predictions, especially when AI cannot provide an adequate explanation of how decisions are made. 
This challenge has been widely recognized in AI-driven predictive maintenance, where the lack of 
explainability reduces trust and adoption among aviation professionals (Gama et al., 2023; Kwakye et al., 
2024). Studies have shown that when AI systems operate as "black boxes," aviation technicians struggle to 
interpret or validate AI-driven recommendations, leading to skepticism and reluctance to rely on AI-based 
fault diagnostics (EASA, 2024; FAA, 2024). The absence of clear interpretability in AI decision-making not 
only creates skepticism among aviation professionals but also complicates certification processes under the 
existing regulatory frameworks (Kabashkin et al., 2025). This shows that explainability is not just an 
additional feature in AI but an essential aspect that determines the level of acceptance of technology in a 
work environment that prioritizes safety. 

While previous research has focused on the potential of AI to improve aircraft maintenance efficiency, the 
findings of this study provide an additional dimension to the regulatory, security, and workforce 
transformation challenges that accompany the adoption of AI in the aviation industry. 

In the study by Kabashkin et al. (2025), AI in predictive maintenance is considered a revolutionary solution 
that can reduce operational disruptions and improve the reliability of aircraft-maintenance systems. 
However, this study emphasizes that the reliability of AI depends on the accuracy of predictions, resilience 
to cyber-attacks, and ability to integrate with existing regulatory procedures. 

Gama et al. (2023) highlighted the importance of Explainable AI (XAI) in AI systems used for critical 
decision-making. The results of this study expand on this idea by showing that the lack of transparency in 
AI not only hinders the trust of technicians but can also impact regulatory uncertainty and the slow pace 
of widespread adoption of AI in the aviation industry. 

From a security perspective, this study complements the discussion raised by Zhang et al. (2024) regarding 
the potential exploitation of AI systems in aviation. Zhang et al. (2024) highlighted cyberattacks as a growing 
threat but did not specifically discuss how weaknesses in AI systems could be exacerbated by the lack of 
binding regulatory standards. This study closes this gap by showing that without a robust AI Assurance 
Framework, AI in predictive maintenance will remain vulnerable to various forms of digital security threats. 
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Based on these findings, several steps can be taken to ensure that AI in predictive maintenance is 
implemented safely and effectively. 

 Aligning Regulations with Probabilistic Nature AIFAA, EASA, and ICAO need to design 
regulations that are not only based on procedural determinism but also accommodate the 
probabilistic nature of  AI without compromising aviation safety standards. 

 Strengthening AI Security Systems to Prevent Cyber Manipulation an Adversarial AI Defense 
Framework-based mitigation strategy is needed, which allows AI to detect and reject manipulative 
attacks that can change the system's prediction results. 

 Explainable AI (XAI) in Predictive Maintenance Certification the AI system used in aircraft 
maintenance must have a high level of  explainability so that the decisions made can be understood 
by technicians and regulators. 

 Improving AI Literacy for Technicians and Regulators AI education and training programs must 
be designed to ensure that the aviation workforce has sufficient understanding to work effectively 
with AI-based systems. 

Through these steps, AI in predictive maintenance can evolve into a more integrated solution in the aviation 
industry while minimizing the potential risks arising from regulatory uncertainty and digital security threats. 

Conclussion 

AI in predictive aviation maintenance is often considered a solution that optimizes efficiency and reduces 
risk. However, this study reveals that the main challenge lies in how this technology is accepted and 
integrated into work systems that have long operated under different paradigms. Regulatory uncertainty 
and technician resistance to algorithm-based decisions show that the successful implementation of  AI does 
not depend only on the sophistication of  the prediction model. Explainability is a determining factor in 
whether AI can be accepted as a tool or is seen as an element that disrupts an established work system. In 
addition, threats to the security of  AI systems make it increasingly clear that the reliability of  this technology 
cannot be measured solely in terms of  prediction accuracy but also in terms of  its resistance to external 
manipulation that can affect flight safety. 

The approach used in this study allows for a broader exploration of  the interactions between technology, 
regulation, and operational practices. CSET-based analysis of  the AI Harm Framework provides a more 
comprehensive picture of  how biases in algorithms can reinforce existing work patterns and how regulatory 
incompatibilities with the probabilistic nature of  AI create new challenges in the certification of  predictive 
systems. This research shows that a multidisciplinary approach can open up layers of  issues that are often 
neglected in technical studies, such as how AI affects the distribution of  responsibilities in aircraft 
maintenance decision-making and how safety standards need to be adapted to accommodate machine 
learning-based systems. 

The results of  this study open up space for further exploration of  the dynamics between AI and aviation 
sector regulations. Longitudinal studies can observe how AI safety standards evolve over time and how 
airlines and regulators adapt to these changes. In contrast, an ethnographic analysis of  technicians can reveal 
the extent to which AI affects work patterns and decision-making at the operational level. In addition, 
cross-country comparisons of  AI regulations in aviation can clarify whether policy fragmentation is an 
obstacle to innovation or actually creates stricter safety standards for the industry. Given the rapid 
technological developments, academic discussions on AI in predictive maintenance must continue to evolve 
by considering the accompanying social, legal, and security aspects. 
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