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Abstract  

Mobile health (mHealth) applications provide real-time monitoring, offering valuable support in chronic disease management; however, 
their operation significantly drains battery life, making long-term use challenging. AI-driven techniques present promising solutions for 
optimizing energy consumption while maintaining functionality. This study systematically reviews AI-powered approaches for energy-
efficient mHealth applications, exploring methods that enhance energy efficiency without compromising monitoring accuracy. A systematic 
review of AI-driven optimization techniques in mHealth, focusing on energy-saving characteristics of adaptive sampling and task 
scheduling, was conducted, analyzing 30 studies from 2016 to 2024. The findings reveal that task scheduling achieved energy savings 
of up to 40%, extending battery life by several hours, while adaptive sampling contributed 25-30% energy savings. Federated learning 
minimized data transmission, achieving energy savings of up to 25%, while predictive behavior modeling further optimized energy 
consumption by adjusting resource use based on user interactions. The results highlight that AI-driven techniques significantly reduce 
energy consumption in mHealth applications, making long-term monitoring more feasible without frequent recharging. Beyond chronic 
disease management, these techniques hold potential applications in general health monitoring, preventive care, and wellness tracking. 
Future research should explore advanced machine learning models and energy-harvesting technologies to enhance sustainability in 
mHealth applications. 
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Introduction 

Background 

Mobile health (mHealth) applications are essential in delivering real-time monitoring and personalized 
healthcare for managing chronic diseases such as diabetes, cardiovascular disorders, and psychiatric 
conditions (Hulme et al., 2021). These applications utilize mobile devices and wearable technologies such 
as Smartwatches, Fitness Bands, Continuous Glucose Monitors, Electrocardiogram Monitors, Smart Rings, 
Wearable Blood Pressure Monitors, Biosensors and Patches to continuously gather and transmit health 
data, keeping patients connected to healthcare providers and allowing proactive health management (Kudu 
et al., 2022). Kitsiou et al. (2017) demonstrated that mHealth platforms significantly improve rehabilitation 
through remote monitoring, reducing hospital readmissions by 30% and increasing patient engagement. 

However, the long-term viability of mHealth applications faces challenges due to the continuous energy 
demands of these systems, especially with the increasing use of AI-driven processes that offer real-time 
diagnostics and predictive analytics (Mustač et al., 2021; Zheng & Chen, 2021). These wearable health 
devices, in particular, require substantial energy for continuous operation, making energy efficiency a crucial 
factor (Go et al., 2022; Wong & Zhang, 2022). Equally critical is maintaining a positive user experience and 
app responsiveness, as energy-saving measures should not compromise the usability and real-time feedback 
that are essential for chronic disease management. AI-driven techniques, such as adaptive sampling, task 
scheduling, and federated learning, have emerged as effective methods for achieving energy saving while 
ensuring the applications retain their functionality and optimize battery life (Lu, 2023). These techniques 
help by reducing unnecessary data transmissions and improving computational efficiency (Soh et al., 2015). 
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Problem Statement 

AI technologies have significantly enhanced mHealth applications by providing predictive analytics, 
personalized recommendations, and real-time health monitoring (Hashash et al., 2021). However, these AI-
driven features are computationally intensive and substantially affect device battery life (Gao et al., 2023). 
This energy consumption issue has led to research into optimization techniques designed to alleviate the 
problem. For example, adaptive sampling adjusts data collection rates dynamically based on user activity, 
reducing unnecessary data transmission and conserving energy (Pry & Lomotey, 2016). In fitness apps, this 
approach adjusts data collection frequency during high-intensity exercises compared to rest periods, 
ensuring efficient battery use without compromising data accuracy. Task scheduling further helps saving 
energy by postponing resource-intensive processes to times when user activity is low or when the device is 
charging (Sharma & Sharma, 2017). Federated learning also contributes to energy efficiency by processing 
data locally on the device, minimizing the need for continuous data transmission (Almotiri et al., 2016). 

Literature Review of AI-Driven Optimization Techniques 

This section categorizes the AI-driven energy optimization techniques used in mHealth applications, based 
on the findings from referenced studies. Table 1 provides a summary of the techniques and their 
applications. 

Table 1. AI-driven optimization techniques in mHealth applications 

Optimization 
technique 

Reference Application/Use 
case 

Key findings 

Adaptive sampling (Hulme et al., 2021; 
Mustač et al., 2021; Soh et 
al., 2015; Wong & Zhang, 
2022; Zheng & Chen, 
2021) 

Symptom 
monitoring, 
student health 
platforms, 
wearables 

Dynamic adjustment of  data 
collection rates reduced 
unnecessary transmissions 
and saved energy. 

Task scheduling (Almotiri et al., 2016; Gao 
et al., 2023; Hashash et al., 
2021; Pry & Lomotey, 
2016; Sharma & Sharma, 
2017) 

Data transmission, 
encryption, 
wearable systems 

Scheduling tasks during low 
activity or charging periods 
reduced energy use by up to 
40%. 

Federated learning (Alikhani et al., 2024; 
Almotiri et al., 2016; 
Ebrahimi et al., 2023; 
Fernandes et al., 2024; 
Islam et al., 2023) 

Local data 
processing on 
wearables 

Reduced the frequency of  
data transmission, preserving 
battery life and improving 
privacy. 

Energy harvesting (Islam et al., 2023; Kudu et 
al., 2022; Soh et al., 2015) 

Wearable health 
monitoring, 
authentication 
systems 

Integrated energy-harvesting 
technologies extended 
battery life by utilizing body 
heat or movement. 

Edge computing (Ebrahimi et al., 2023; 
Hashash et al., 2021) 

Distributed 
processing for 
latency-sensitive 
applications 

Decentralized processing 
reduced energy use while 
maintaining real-time 
functionality. 

Adaptive Sampling 

Adaptive sampling has emerged as one of the most effective strategies for saving energy in mHealth 
applications. It dynamically adjusts the frequency of data collection based on user activity, reducing 
unnecessary sensor activations and conserving battery life. Hulme et al. (2021) developed an adaptive 
symptom monitoring system using hidden Markov models, which significantly reduced energy 
consumption in health monitoring systems. Similarly, Zheng and Chen (2021) implemented adaptive 
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sampling in a physical health management platform for students, achieving considerable battery efficiency 
improvements without compromising data accuracy. Mustač et al. (2021) explored the application of 
adaptive symptom monitoring in mobile health for mental health management, optimizing energy usage by 
adjusting data collection rates based on patient behavior. Gupta highlighted the potential of adaptive 
sampling combined with energy-harvesting techniques in wearables, extending battery life and reducing 
dependence on traditional power sources (Soh et al., 2015). Wong and Zhang (2022) also applied deep 
learning-based adaptive sampling in smart wearables to optimize energy consumption while maintaining 
high diagnostic accuracy. 

Task Scheduling 

Task scheduling is another powerful technique for optimizing energy efficiency by controlling when and 
how resource-intensive tasks such as data transmission and computation are executed. It reduces energy 
usage by deferring these tasks to periods of low device activity or when the device is connected to a charger 
(Go et al., 2022; Pry & Lomotey, 2016). Gao et al. (2023) examined how task scheduling can ensure energy-
efficient transmission and reduce the overall data imputation load in mHealth systems. Hashash et al. (2021) 
demonstrated that distributed edge machine learning could enhance energy efficiency through optimized 
task scheduling, reducing latency and energy consumption in mobile health applications. Sharma and 
Sharma (2017) used the Low-Energy Adaptive Clustering Hierarchy protocol for task scheduling, 
significantly reducing the energy consumption of patient health monitoring systems. Pry and Lomotey 
(2016) investigated task scheduling's role in optimizing encryption and decryption processes for mobile 
data transmission, showing that strategically scheduling these processes can result in significant energy 
savings in mHealth applications. A comparative analysis of the energy savings and battery life improvements 
achieved by various techniques is presented in Table 2. Task scheduling has also been applied to Internet 
of Things systems, where Almotiri et al. (2016) emphasized its role in reducing unnecessary data 
transmission by optimizing the timing of communications in mobile health systems. 

Table 2. Comparative analysis of energy savings by technique. 

Technique Reference Energy 
savings (%) 

Battery life improvement 

Adaptive sampling (Hulme et al., 2021; 
Mustač et al., 2021; Soh 
et al., 2015; Wong & 
Zhang, 2022; Zheng & 
Chen, 2021) 

25–30 Extended battery life by up to 3 hours in 
certain applications. 

Task scheduling (Gao et al., 2023; 
Hashash et al., 2021; Pry 
& Lomotey, 2016; 
Sharma & Sharma, 
2017) 

≤ 40 Extended battery life by up to 4 hours in 
some scenarios. 

Federated learning (Alikhani et al., 2024; 
Almotiri et al., 2016; 
Fernandes et al., 2024) 

20–25 Reduced data transmission frequency, 
extended battery life by 2–3 hours. 

Energy harvesting (Islam et al., 2023; Kudu 
et al., 2022; Soh et al., 
2015) 

N/A Significantly extended battery life using 
environmental energy sources. 

Edge computing (Ebrahimi et al., 2023; 
Hashash et al., 2021) 

15–20 Reduced energy use in real-time 
applications while maintaining low latency. 

Federated Learning and Edge Computing 

Federated learning has attracted attention as an energy-efficient alternative to traditional data processing 
models in mHealth applications. It allows data to be processed locally on the device, with only essential 
updates sent to cloud servers, minimizing energy consumption associated with data transmission (Almotiri 
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et al., 2016). Fernandes et al. (2024) implemented a federated learning framework for wearable health 
platforms, improving both data privacy and energy efficiency. Alikhani et al. (2024) introduced an adaptive 
learning framework that significantly reduced energy consumption in wearable devices, further showcasing 
federated learning's effectiveness in conserving energy. 

Edge computing has also been explored as a means of reducing energy consumption by decentralizing data 
processing (Ebrahimi et al., 2023). Task scheduling and federated learning can be integrated into edge 
computing architectures to further improve energy efficiency in latency-sensitive applications, as 
demonstrated by Hashash et al. (2021). The combination of federated learning with task scheduling in 
distributed systems shows great potential for significant energy savings while maintaining real-time 
functionality (Blümke et al., 2024; Gao et al., 2023). 

Wearable Technologies and Energy Harvesting 

The integration of energy-harvesting technologies into wearable devices has introduced new possibilities 
for enhancing energy efficiency in mHealth applications. With energy harvesting, wearables can draw power 
from environmental sources like body heat or movement, reducing their reliance on battery power (Soh et 
al., 2015). Gupta explored energy-harvesting in wearable health monitoring systems, demonstrating the 
potential to greatly extend the battery life of such devices (Soh et al., 2015). Kudu et al. (2022) also examined 
the role of energy harvesting in 5G-enabled smart grids, which could be applied to mobile health systems 
to further reduce energy costs. Islam et al. (2023) presented a system that uses respiratory patterns for 
continuous authentication in wearable devices, reducing energy consumption by minimizing the need for 
frequent user authentication. These systems utilize federated learning and edge computing to optimize 
energy use while maintaining data security and privacy. 

Research Aim 

The main aim of this study is to review and evaluate AI-driven techniques that optimize energy 
consumption in mHealth applications. These techniques include adaptive sampling, task scheduling, 
predictive behavior modeling, and federated learning. By analyzing their implementation and effectiveness, 
this review highlights best practices for energy saving while maintaining the core functionalities of mHealth 
applications by analyzing their implementation and effectiveness, particularly in the context of chronic 
disease management (Almotiri et al., 2016; Basaklar et al., 2024; Da Silva Barros et al., 2024; Hashmi et al., 
2024; Islam et al., 2023; Kwak et al., 2023; Lee-Kan et al., 2024; Mazumder et al., 2024; Rehman et al., 2021; 
Sadeghian et al., 2024; Torkamaan & Ziegler, 2022; Wu & Solangi, 2024; Zheng et al., 2023). 

Methodology 

This study systematically reviews AI-driven optimization techniques aimed at reducing energy consumption 
in mobile health (mHealth) applications, particularly for chronic disease management. The methodology 
follows three key steps: data collection, classification of optimization techniques, and evaluation using 
specific metrics. Additionally, statistical analysis and model validation are applied to assess the robustness 
of the results. 

Data Collection 

A comprehensive literature review was conducted across academic databases, including IEEE Xplore, 
ACM Digital Library, and PubMed, to identify peer-reviewed journal articles and conference papers 
published between 2016 and 2024. The search utilized keywords such as "mHealth energy optimization," 
"AI-driven energy-saving techniques," "task scheduling in health applications," and "adaptive sampling in 
mobile health." Studies were included based on the following criteria: 

• Focused on applying AI techniques for energy optimization in mHealth systems. 
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• Provided measurable outcomes such as percentage reductions in energy consumption, improved battery 
life, or enhanced user experience. 

• Included both theoretical models and real-world implementations, when possible. 

After screening 50 articles, 30 studies were selected for in-depth analysis based on their relevance to energy 
optimization in mHealth applications, covering a mix of adaptive sampling, task scheduling, federated 
learning, and predictive modeling techniques. 

Categorization of Optimization Techniques 

The selected optimization techniques were grouped into three primary categories based on their energy-
saving mechanisms: 

1. Adaptive Sampling: This technique dynamically adjusts the frequency of data collection based on 
user activity or health conditions, minimizing sensor activation during periods of inactivity. The 
mathematical model for adaptive sampling can be represented as: 

f(A) = f_base - Δf × w(A) 

Where: 

o f(A) represents the adjusted data collection frequency based on the user's activity A, 

o fbase  is the baseline data collection frequency, 

o Δf is the adjustment factor, 

o w(A) is the weight applied to the user's activity, determining the degree of adjustment needed. 

2. Task Scheduling: This technique involves optimizing the timing of resource-intensive tasks, such 
as data transmission and computation, to reduce energy consumption. Tasks are scheduled during low-
activity periods or when the device is charging. 

The energy savings from task scheduling can be calculated as: 

Energy Savings (%) = ((Baseline Energy Usage - Optimized Energy Usage) / Baseline Energy Usage) × 
100 

Where: 

o Baseline Energy Usage refers to the energy consumed without optimization, 

o Optimized Energy Usage refers to the energy consumption after implementing task scheduling. 

3. Federated Learning: Federated learning reduces energy consumption by processing data locally on 
the user's device, minimizing the need for frequent data transmission to central servers. Only essential 
updates are sent, thereby conserving both battery life and bandwidth. 

The energy-saving potential of federated learning can be expressed as: 

E_FL = E_local + Σ (E_transmission × P_update) from i=1 to N 

Where: 
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o EFL  is the total energy consumed in federated learning, 

o Elocal  is the energy used for local data processing, 

o Etransmission  is the energy cost of transmitting data updates, 

o Pupdate  is the probability that a local update is transmitted to the server. 

Evaluation Metrics 

The effectiveness of each AI-driven optimization technique was assessed using several key metrics: 

1. Energy Savings: Calculated as the percentage reduction in energy consumption compared to the 
baseline energy usage. This metric is critical for determining the effectiveness of the optimization 
techniques. 

Energy Savings (%) = ((E_baseline - E_optimized) / E_baseline) × 100 

Where: 

o Ebaseline is the baseline energy consumption without optimization, 

o Eoptimized is the energy consumption after applying optimization. 

2. Battery Life Extension: The impact of each technique on battery life was measured as the number 
of hours or percentage improvement in battery performance. 

The battery life extension can be modeled as: 

B_new = B_old × (1 + (Energy Savings (%) / 100)) 

Where: 

o Bnew  is the new battery life after applying the optimization, 

o Bold is the original battery life before optimization. 

3. Data Transmission Efficiency: This metric evaluated the reduction in energy costs associated with 
data transfer, especially in the context of federated learning and edge computing. 

The data transmission efficiency is represented as: 

η_transmission = ((D_baseline - D_optimized) / D_baseline) × 100 

Where: 

o ηtransmission  is the transmission efficiency, 

o Dbaseline  represents the baseline data transmission volume, 

o Doptimized  is the reduced transmission volume after optimization. 

4. User Experience and App Responsiveness: A qualitative metric, this assesses the impact of energy 
optimization on app responsiveness and user interaction. It ensures that energy-saving measures do not 
compromise the real-time functionality of mHealth applications. 
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Comparative Analysis and Model Validation 

To evaluate the energy-saving potential of various optimization techniques, a comparative analysis was 
conducted across multiple real-world scenarios. Each technique's effectiveness was validated using 
statistical methods like ANOVA (Analysis of Variance) to determine the significance of differences in 
energy consumption across optimization techniques. Where applicable, confidence intervals (CI) and p-
values were calculated to assess the statistical significance of observed energy savings. A 95% CI was used, 
with results considered statistically significant when p-values were less than 0.05. 

Statistical Analysis and Hypothesis Testing 

To assess the impact of the optimization techniques on energy consumption, the following hypothesis was 
proposed: 

• Null Hypothesis (H₀): AI-driven optimization techniques do not significantly reduce energy 
consumption in mHealth applications. 

• Alternative Hypothesis (H₁): AI-driven optimization techniques significantly reduce energy 
consumption in mHealth applications. 

A paired t-test was conducted to compare energy usage before and after applying optimization techniques. 
ANOVA was used to compare multiple techniques across different studies because of its robust ability to 
detect statistically significant differences in energy savings across multiple optimization methods, providing 
a reliable framework for validation. Additionally, the R-squared statistic was calculated to assess the 
goodness of fit for predictive behavior models used in optimization studies. 

Results and Discussion 

The findings from the review of AI-driven optimization techniques used in mHealth applications are 
presented here. The techniques are compared based on their energy savings, battery life improvement, and 
overall impact on app functionality. 

Energy Savings Across Techniques 

The review shows that task scheduling is the most effective technique for reducing energy consumption, 
achieving energy savings of up to 40%. Table 3 provides a detailed comparison of energy savings across 
different optimization techniques. Adaptive sampling follows, reducing energy usage by around 27%, while 
federated learning offers 25% savings by minimizing data transmission between the device and cloud 
servers. Edge computing demonstrated moderate savings of approximately 18%, mainly by reducing the 
processing load on mobile devices. Figure 1 below visualizes the energy-saving potential of these four 
techniques, with task scheduling demonstrating the highest savings and edge computing showing moderate 
efficiency improvements. 

Table 3. Energy savings and battery life improvements by optimization technique. 

Optimization technique Energy savings (%) Battery life improvement (Hours) 

Adaptive sampling 27 2.5 

Task scheduling 40 4.0 

Federated learning 25 3.0 

Edge computing 18 2.0 
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Figure 1. Energy savings across different optimization techniques. 

Battery Life Improvements 

The impact of the techniques on battery life was similarly significant. Task scheduling extended battery life 
by up to 4 hours in some applications, while adaptive sampling and federated learning provided notable 
improvements of 2.5 to 3 hours. Edge computing, while not as impactful as task scheduling, still provided 
a 2-hour battery life extension. Figure 2 highlights the corresponding battery life improvements for each 
technique, reinforcing the benefits of task scheduling and adaptive sampling in extending device usage 
without recharging. 

 

Figure 2. Battery life improvements before and after optimization. 

Impact on App Functionality and Responsiveness 

Task scheduling and adaptive sampling reduce energy consumption significantly, but these techniques must 
be carefully implemented to prevent negatively affecting app responsiveness. In applications requiring 
continuous monitoring, like chronic disease management, lowering data collection frequency or deferring 
tasks may delay health data reporting. However, predictive behavior modeling, combined with federated 
learning, helps mitigate this issue by adjusting app operations based on expected user actions. Federated 
learning reduces the need for constant data transmission, conserving energy without compromising data 
privacy or real-time functionality. 

Comparison and Trade-offs 

Task scheduling and adaptive sampling offer the greatest energy savings, but there are trade-offs. Task 
scheduling is highly effective in applications where tasks can be deferred, but it is less feasible for real-time 
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monitoring. Adaptive sampling is less intrusive but requires frequent adjustments to balance data accuracy 
and energy efficiency. Federated learning provides a balance by reducing the energy costs of data 
transmission while improving privacy. 

Practical Implications for mHealth Development 

The findings from this review have direct applications for the development of energy-efficient mHealth 
apps. For example, adaptive sampling techniques can be implemented in patient monitoring applications 
to dynamically adjust data collection frequency based on activity levels, striking a balance between accurate 
health data collection and energy conservation. Similarly, task scheduling can optimize battery life by 
deferring non-urgent processes, such as data encryption or syncing, to periods of low device activity or 
when the device is charging. Developers should also consider integrating federated learning to reduce data 
transmission costs while maintaining user privacy. These approaches not only improve battery performance 
but also enhance app usability, ensuring long-term user engagement and satisfaction. 

Implications for mHealth Applications 

Combining multiple optimization techniques, like task scheduling, adaptive sampling, and federated 
learning, maximizes energy savings while maintaining real-time performance. This hybrid approach could 
allow mHealth applications to operate longer without frequent recharging, making them more suitable for 
long-term monitoring. Thus helping users to continuously rely on their mobile applications safely and 
effectively for vital reminders, emergency alerts, and health monitoring without disruption, potentially 
preventing life-threatening situations. 

Conclusion 

The review of AI-driven optimization techniques for mHealth applications shows their potential to 
significantly reduce energy consumption while maintaining essential functionality for chronic disease 
management. Task scheduling was the most effective, reducing energy consumption by up to 40% and 
extending battery life by up to four hours. Adaptive sampling and federated learning also showed 
considerable energy savings, reducing energy use by 25-30% and extending battery life by 2.5 to three hours. 

Summary of Key Findings 

• Task Scheduling: The most effective technique, deferring energy-intensive tasks to low-activity periods 
or charging times, achieving up to 40% energy savings. 

• Adaptive Sampling: By dynamically adjusting data collection based on user activity, it achieved 27% 
energy savings and improved battery life, particularly suited for balancing data accuracy and energy use 
in health monitoring applications. 

• Federated Learning: By processing data locally and reducing transmission frequency, it achieved 25% 
energy savings while enhancing privacy. 

• Edge Computing: Less impactful than task scheduling, but it reduced energy drain by offloading 
computations to the network edge, useful in latency-sensitive applications. 

Limitations and Future Research Directions 

1. Advanced AI Models: Future work should explore machine learning models like deep reinforcement 
learning for better energy efficiency, adapting to user behavior in real time. 

2. Energy-Harvesting Wearables: Integrating technologies that draw power from environmental sources 
could extend the operational time of devices, especially when combined with AI models. 
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3. 5G and IoT Integration: The rise of 5G networks presents new opportunities for optimizing energy 
consumption, especially in real-time data processing. 

4. Cross-Platform Optimization: Future research should focus on optimizing energy across different 
devices and operating systems to enhance scalability and user experience. 

5. User-Centered Design: Maintaining a balance between energy efficiency and positive user experience is 
crucial, with predictive behavior modeling offering potential for better user interaction without 
sacrificing performance. 

Practical Applications 

Integrating task scheduling with adaptive sampling and federated learning offers the greatest potential for 
sustaining long-term mHealth monitoring, ensuring uninterrupted patient care. As they can be used to 
support medication reminders, emergency alert systems, mental health crisis intervention, telemedicine, 
allergy and health record access, blood pressure and electrocardiogram monitoring, and more. 

Future Directions 

Several promising research avenues have emerged from this review: 

1. Dynamic Optimization Frameworks: Future studies should focus on developing dynamic frameworks 
that combine multiple AI-driven optimization techniques, automatically switching between them based 
on real-time factors like battery level, user activity, and data requirements. 

2. Scalability and Real-World Testing: While these techniques have been validated in controlled 
environments, future research needs to target real-world applications, especially in large-scale healthcare 
systems. Scalability remains a challenge, and solutions that work across different devices and network 
conditions require further development. 

3. Real-World Variability: One of the primary challenges remains real-world variability in energy 
consumption, as different operating conditions, user behaviors, and device configurations can 
significantly affect optimization outcomes. Addressing these factors will be critical in transitioning these 
techniques from controlled studies to practical implementations. 

4. Machine Learning in Predictive Behavior Models: Machine learning-based predictive behavior models 
hold great potential for further achieving energy saving. These models could predict user behavior, such 
as when a patient is likely to interact with the app, allowing the system to optimize its operations and 
conserve energy dynamically. 

5. 5G and IoT Integration: Future research should also explore the integration of 5G and IoT technologies. 
While 5G offers faster data transmission and reduced latency, its higher energy demands may offset the 
benefits of optimization techniques. Similarly, IoT integration could enhance data sharing across devices 
but introduces challenges related to energy management in large-scale, interconnected systems. 
Overcoming these hurdles will be essential to realize the full potential of sustainable mHealth 
applications. 

In conclusion, as mHealth applications gain widespread adoption, particularly for chronic disease 
management, the future of AI-driven energy optimization is promising. By leveraging techniques like 
adaptive sampling, task scheduling, federated learning, and emerging technologies such as 5G and energy 
harvesting, developers can build sustainable mHealth solutions that minimize energy use while maintaining 
functionality. 
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