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Abstract  

This article aims to estimate irradiance using measured parameters from a real photovoltaic system. For this study, output current and 
voltage values were used from a set of solar panels with a capacity of 10 kW and a 10 kVA power inverter, which provide the necessary 
data for irradiance estimation. The data was collected at a sampling frequency of 15 seconds. To achieve this goal, an Artificial Neural 
Network (ANN) was applied to the reference data, which includes time series of solar irradiance, current, and voltage produced by the 
photovoltaic panels on different days of the year under varying weather conditions. Once the ANN is trained, its performance will be 
validated by comparing the estimation generated by the network with data from a reference cell on the days selected for the study. 
Additionally, the model will be evaluated using data from other days, not used in the training, to verify its ability to generalize under 
different meteorological conditions. 
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Introduction 

The adoption of  renewable energy sources has become one of  the main strategies to reduce the carbon 
footprint generated by fossil fuels and to complement energy networks powered by highly polluting sources, 
especially in areas where energy consumption is rising or access to traditional sources is limited. In this 
energy transition context, solar energy is emerging as the primary choice for electricity generation. However, 
its production faces significant challenges due to fluctuations and intermittency in capacity caused by 
regional climatic variations, such as temperature, humidity, wind speed, atmospheric pressure, and 
precipitation [1]. 

To address these challenges, connecting Photovoltaic (PV) systems to the electrical grid helps to offset 
fluctuations, increasing the available energy capacity in the grid. Therefore, accurate forecasting of  solar 
radiation is essential for optimizing efficiency in solar energy production. This predictive capability not only 
improves the performance of  solar power plants but also aids solar-based electricity providers in managing 
their operations more efficiently, which supports photovoltaic plant implementation projects in regions that 
rely on this energy source to meet their decarbonization goals. 

The application of  neural network models, such as Feed- Forward Neural Network (FFNN), Radial Basis 
Function Neural Network (RBFNN), and Recurrent Neural Network 

(RNN), enhances the forecasting of  power generated by photovoltaic systems based on meteorological 
data. The FFNN enables direct predictions of  photovoltaic power through a forward propagation process, 
which efficiently identifies non- linear patterns in meteorological factors. On the other hand, the RBFNN 
is useful for capturing complex relationships between meteorological data and generated power, particularly 
in scenarios requiring rapid response to climate variations. Finally, the RNN stands out for its ability to 
process temporal data sequences, allowing for the analysis of  historical patterns in solar irradiance and 
weather conditions, thereby improving forecasting accuracy for photovoltaic system output. The com- 
bination of  these techniques allows prediction systems to adapt their results to the variability of  
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meteorological conditions, optimizing solar energy integration into the electrical grid and increasing 
efficiency in renewable resource management and forecasting [2], [3]. 

A quick literature review shows various Artificial Inteligence (AI) techniques applied to solar forecasting, 
with the main ones being: [4] uses different neural network models and machine learning techniques to 
improve the accuracy of  solar irradiance estimation, a key factor in the performance of  photovoltaic 
systems. The proposed models rely on the collection of  local meteorological data, such as temperature and 
humidity, which are integrated into predictive algorithms that anticipate variations in solar energy 
production. Moreover, integrating these meteorological factors enables dynamic adjustment of  the 
predictions, which is essential in environments with high climate variability. On the other hand, [3] explores 
solar irradiance forecasting, a key but unstable variable in renewable energy production. This study employs 
two advanced time-series models: Echo State Queueing Networks and Differential Polynomial Neural 
Networks, which have proven highly efficient in forecasting and modeling time series, thereby improving 
the accuracy of  solar irradiance estimation. The ability of  these models to adapt to complex, nonlinear 
patterns makes them highly effective in scenarios with high irradiance variability, such as those with rapidly 
changing weather. [5] presents an innovative convolutional neural net- work framework for solar irradiance 
forecasting, optimized using a hybrid Genetic Algorithm/Particle Swarm Optimization (GA/PSO) 
algorithm and chaotic techniques. This approach enhances both performance and prediction accuracy. The 
use of  chaotic techniques to initialize model parameters enables a 

higher degree of  precision and optimization, especially useful for short-term forecasting applications in 
photovoltaic systems. Additionally, there are studies that use Artificial Neural Net- works (ANN) to 
optimize the prediction of  current-voltage (I-V) curves for solar modules under varying temperature and 
irradiance conditions [6]. This approach reduces the amount of  data needed for training without 
compromising accuracy, by comparing ANN predictions with analytical simulations. Simplifying the data 
required for training not only decreases computational complexity but also enables a more practical 
implementation in real-time monitoring systems, enhancing the operational efficiency of  photovoltaic 
plants. 

Other authors also use artificial intelligence tools, such as machine learning. Among them, [7] compares the 
capacity prediction of  different machine learning regression techniques, considering the problem of  solar 
radiation estimation from geostationary satellite data. Four state-of-the-art algorithms are considered: 
Support Vector Machines, Multilayer Perceptrons, Extreme Learning Machines, and Gaussian Processes. 
For the input variables of  the regressors, a cloudiness index, a clear sky model, and several reflectivity values 
from Meteosat visible images are also used. Including these factors allows the algorithms to better adapt to 
atmospheric variability, increasing estimation accuracy under different weather conditions. On the other 
hand, [8] presents short-term solar irradiance forecasting algorithms based on machine learning, specifically 
using the Hidden Markov Model and SVM regression. To analyze the performance of  these techniques, 
experimental evaluations were carried out on the Matlab platform, using data from the Australian Bureau 
of  Meteorology. These experiments revealed that prediction techniques can capture rapid variations in 
irradiance, which is particularly useful in real- time photovoltaic generation monitoring applications. Finally, 

[1] leverages the transformer-based machine learning model for irradiance forecasting, using ten years of  
irradiance data obtained from the West Texas Mesonet Data Archive at the Reese Center in Lubbock, Texas. 
Like other studies, the goal is to use predicted irradiance values to anticipate generated power. The 
transformer architecture allows capturing complex patterns in long time series, improving prediction 
accuracy and providing greater adaptability over extended periods of  climatic variability. 

For neural network training, optimization is essential to determine the model’s efficiency and accuracy. 
Among the most notable algorithms is AdaGrad, which adjusts the learning rate based on the cumulative 
sum of  squared gradients, allowing it to adapt to specific data characteristics. Another widely used algorithm 
is RMSProp, which focuses on convergence by utilizing recent data windows [9]. 

One of  the most commonly used optimization algorithms today is Adam (Adaptive Moment Estimation), 
which combines the advantages of  AdaGrad and RMSProp, providing robust and adaptive parameter 
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updates [10], [11]. Adam dynamically adjusts each model parameter during training through the integration 
of  an exponential moving average. This approach maintains stability in short-term updates and adaptability 
in the long term, preventing abrupt drops in the error function. Moreover, the bias correction applied in 
the initial iterations facilitates faster convergence [11]. 

In this article, the Adam optimization algorithm is used to train artificial neural networks for irradiance 
prediction. This approach is based on the dynamic adjustment of  the model’s parameters, leveraging the 
advantages of  AdaGrad and RMSProp to maintain stability and adaptability in updates during training. The 
methodology described in Section II includes details on the models, parameters, and local conditions 
applied in irradiance prediction. Section III explains the use of  neural networks with backpropagation 
optimized by Adam, which enables greater accuracy in processing sequential data. Additionally, Section IV 
details the prediction processing, including steps like data normalization and the use of  specific 
architectures to improve prediction accuracy. Finally, Section V presents the irradiance prediction results by 
comparing predicted values with actual values, thus validating the proposed model. 

Methodology 

Solar forecasting is essential for managing and optimizing renewable energy in photovoltaic systems, as it 
allows for anticipating solar irradiance over a specific period and, consequently, estimating the generated 
power. Given the variability of  solar energy, influenced by weather conditions such as cloud cover, humidity, 
and temperature, this technique is crucial. Various methodologies are used for these forecasts, ranging from 
statistical models and artificial neural networks to advanced machine learning techniques. Accurate 
forecasting facilitates the integration of  solar energy into the electrical grid, reduces reliance on fossil fuels, 
and improves both the efficiency and stability of  the electrical system. 

Local Conditions: Due to the low variation in temperatures between summer and winter and the combination 
of  humid coastal and nearby desert climates, Lima, Peru, is considered a unique study site in terms of  solar 
radiation availability. Although solar radiation in Lima is significant, especially in summer, frequent fog and 
persistent cloud cover for much of  the year characteristic of  its subtropical arid climate impact the direct 
capture of  solar energy. This makes the study of  irradiance in Lima relevant to optimize solar energy 
utilization under variable atmospheric conditions. The PV system under study is geographically located at 
1201’31.6”S and 7702’45.5”W. Climatic data for solar radiation estimation are collected using a photovoltaic 
reference cell and through direct measurements of  voltage and current at the output of  a photovoltaic 
array. This monitoring system was developed by the Renewable Energy Center of  the National University 
of  Engineering, with a sampling frequency of  15 seconds, allowing detailed, real-time data on solar radiation 
availability in the region, specifically adapted to Lima’s unique climate characteristics. The PV system is 
connected with a 10 kVA inverter (described in Table I), which, under ideal conditions and assuming a 
power factor close to 1, provides a real power output of  10 kW. This configuration allows for near-complete 
utilization of  the inverter’s capacity. Under optimal solar irradiance, the system will generate around 10.5 
kW, closely matching the inverter’s 10 kW limit. In periods of  high irradiance, the inverter may slightly 
restrict output to 10 kW, resulting in a minimal amount of  excess energy generated by the panels. 

Table I. Specifications of  the Inverter Fronius Symo 10.0-3 208-240 

Specification Minimum Medium Maximum 

AC nominal operating voltage 
AC operating voltage range 
AC max continuous output current at Vnom 
AC recommended min. overcurrent 
protection 
AC maximum continuous output power 
AC nominal operating frequency 

208 V 
138-229 V 
27 A 
35 A 
9995 W / VA 
60 Hz 

220 V 
194-242 V 
26.2 A 
35 A 
9995 W / VA 
50 / 60 Hz 

240 V 
211-264 V 
24 A 
30 A 
9995 W / VA 
60 Hz 

AC output power factor 0 - 1 ind / cap 
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AC operating frequency range @ 60 Hz 
AC operating frequency range @ 50 Hz 
DC operating voltage range 
DC maximum system voltage 
DC maximum continuous current 
(MPP1/MPP2) 

59.3 - 60.5 Hz / 3 phase 
48.0 - 50.5 Hz / 3 phase 
300 - 500 V 
600 V 
25.0 A / 16.5 A 

This PV system employs 115 W solar panels (as detailed in Table II) arranged in a configuration of  7 panels 
in series and 13 groups in parallel. By connecting 7 panels in series, each series group produces a combined 
output of  805 W (calculated by multiplying 7 panels by 115 W each). With 13 of  these groups connected 
in parallel, the system achieves a total power output of  approximately 10.5 kW (805 W multiplied by 13), 
resulting in a generation capacity of  around 10.5 kW. 

Table Ii. Specifications of  the Cdf–1150a1 Pv Module 

Specification Symbol Value 

Manufacturer 
Model 

 eterbright 
CdF - 1150A1 

Nominal Power 
Max Power Voltage 
Max Power Current 
Open Circuit 
Voltage Short Circuit Current Max 
System Voltage 

Pmax 
Vmpp 
Impp 
Voc 
Isc 
Vsys 

115.0 Watts (+5% / -3%) @ STC 
59.3 Volts 
1.94 Amps 
77.2 Volts 
2.07 Amps 
1000 Vdc (IEC) / 600 Vdc (UL) 

Mechanical Load 
Weight 
Dimensions 

 2400 Pa 
12.9 kg / 28.44 lbs 
1234 x 652 x 35 mm 

Overview of  the Irradiance Prediction System: Figure 1 shows the interaction between irradiance prediction and 
the operations of  a photovoltaic system. The solar irradiance prediction system integrates meteorological 
data and measurements from a photovoltaic system to optimize electricity generation, photovoltaic system 
capacity design, and develop grid connection strategies. 

In the upper left corner, a meteorological station equipped with a photovoltaic reference cell collects 
meteorological data (mission profile). This information is essential for feeding the solar irradiance 
prediction model. 

Solar irradiance prediction model: The mission pro- file data is used to train a solar irradiance prediction 
model. This model is a neural network that utilizes the collected data to generate irradiance predictions 
based on weather patterns. 

Solar irradiance prediction: The prediction model produces a curve representing the predicted solar 
irradiance over time, enabling accurate estimates of  solar radiation availability for the photovoltaic system. 

On the right side, the photovoltaic array is shown. The irradiance and weather conditions directly influence 
electricity generation, while the voltage measurement system provide real-collected data that is used to 
validate and adjust the prediction model. 

The energy captured by the photovoltaic array is converted into electricity and managed by an inverter. 
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Based on the irradiance predictions and electricity generation data, the optimal capacity of  the photovoltaic 
system is designed. Additionally, a grid connection strategy is developed to efficiently integrate the 
generated energy, maximizing efficiency and supply stability. 

Data Cleaning and Processing: For this study, a dataset obtained from a photovoltaic system on various dates 
was used, containing records of  variables such as Date, AC Voltage, AC Current, Active Power, Apparent 
Power, Reactive Power, Frequency, Power Factor, Total Energy, Daily Energy, DC Voltage, DC Current, 
DC Power, Irradiance, Module Temperature, and Ambient Temperature. Since the objective of  the model 
is to predict solar irradiance, irradiance was selected as the target variable, with DC Voltage and DC Current 
as dependent variables, given that they are key parameters for this estimation. The observed values for these 
variables were as follows: for DC Voltage, a minimum of  374.49 V and a maximum of  567.42 V; for DC 
Current, a minimum of  2.95 A and a maximum of  25.56 A; and for Irradiance, a minimum of  87 W/m 
and a maximum of  1205 W/m. These values were normalized by scaling them to a range between 0 and 1 
to improve model performance. Finally, the dataset was split into two subsets: training and testing, allocating 
20% of  the data to the testing set, which allows for assessing the model’s performance and generalization 
capability. 

 

Fig. 1. Solar Irradiance Prediction System 
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Back Propagation 

Adam Algorithm: The Adam optimization algorithm (Adaptive Moment Estimation) is one of  the most 
widely used optimizers in neural network optimization. Adam combines the advantages of  the AdaGrad 
and RMSProp algorithms, providing an efficient and robust parameter update for the model. This optimizer 
is particularly useful in problems with noisy data or sparse gradients, as it dynamically adapts to each model 
parameter during training. The AdaGrad algorithm modifies the learning rate by dividing it by the sum of  
the squared accumulated gradients, as shown in Equation 1. This allows the learning rate to adjust 
throughout training, enhancing its adaptability [10]. 

𝜃 = 𝜃0 − 𝜂 ∙
∇𝐽(𝜃)

√𝑠0+𝜖
  (1) 

 

Where: 

 s is the sum of  the squares of  the gradients, with an initial value of  0. 

 𝜖 is a smoothing term to prevent division by zero (typically 𝜖 = 1 × 10−8). 

 The other symbols have the same meanings as defined 

On the other hand, RMSProp accelerates training con- vergence, increases computational efficiency, and 
improves various performance metrics, which facilitates the generation of  untargeted adversarial sample 
sets [9]. 

Adam uses exponential moving averages to consider both the current and historical gradients, calculating 
first and second-order averages. This allows Adam to maintain a balanced update of  parameters, combining 
the stability of  AdaGrad with the responsiveness of  RMSProp, avoiding abrupt descents, and improving 
model accuracy. 

 Adam combines the strengths of  AdaGrad and RMSProp, achieving an adaptive learning rate that adjusts 
to the historical accumulation of  gradients (from AdaGrad) and stabilizes shortterm updates (from 
RMSProp). This optimizes precision and efficiency in model training, ensuring an effective parameter 
update. The mathematical equations that define this algorithm are: ([11], [12]). 

First moment update (mean of  gradients): 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡   (2) 

Where: 

 𝑚𝑡 is the moving average of  the gradient at step t. 

 𝑔𝑡  is the gradient of  the objective function at step t. 

 𝛽1 is the exponential decay rate (default 𝛽1 = 0.9) 

Second-moment update (mean of  squared gradients): 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2  (3) 
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Where: 

 𝑣𝑡 is the moving average of  the squared gradients. 

 𝛽2 is the exponential decay rate for the squared 

gradient (default 𝛽2 = 0.999). 

Bias Correction: Since the moments are initialized to zero, a correction is applied to avoid bias in the first 
iterations: 

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 , �̂�𝑡 =

𝑣𝑡

1−𝛽2
𝑡  (4) 

Parameter update: Finally, the model parameters are updated using the following expression: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√�̂�𝑡+𝜖
�̂�𝑡  (5) 

Where: 

 𝜃𝑡  are the model parameters at step t. 

 𝜂 is the learning rate. 

 𝜖 is a small positive value to avoid division by zero (typically 𝜖 = 1 × 10−8). 

Neural Networks: Artificial Neural Networks are inspired by the biological neurons in the human brain, 
as they feature multiple connections, with each connection having an associated weight. This weight 
allows input data to be multiplied by it to generate a result, which is then transmitted to the next neuron, 
forming a chain that connects all neurons and creates a complex mathematical model. For training the 
neural network in this project, is selected a feed-forward neural network (FFNN), as shown in Figure 2, 
which consists of  input data (X), followed by a hidden layer where connections between neurons are 
established, activation functions are applied, and specific weights 
(W (1,2,3,...,n)) are assigned to each connection, ultimately producing the processed output data (Y). 

 

Fig. 2. Neural Networks Structure 
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Neural networks are nonlinear multivariate functions, as shown in (6), where 𝐼 ⊂ ℝ𝑛  and 𝑂 ⊂
ℝ𝑚represent the input and output domains with dimensions n and m, respectively. These functions allow 
for complex transformations of  input data to obtain the desired results. 

𝑓: 𝐼 ⊂ ℝ𝑛 → 𝑂 ⊂ ℝ𝑚  (6) 

A neural network includes multiple hidden layers, represented by ℎ = {0,10 … , 𝐻 + 1}, connected to the 

previous layers ℎ − 1. The first layer (ℎ = 0) corresponds to the input data, while the last layer (ℎ = 𝐻 +
1) represents the output of  function f. Figure 2 shows a neural network with 𝐻 = 2 hidden layers [13]. 

In this Figure, the output a(h) of  each layer is calculated by combining an affine transformation and a 
nonlinear function. The outputs of  inactive layers in layer h are determined by (7), while the outputs of  
active layers are defined by (8). 

𝑧(ℎ) = 𝑊(ℎ) ∙ 𝑎(ℎ−1) + 𝑏(ℎ)  (7) 

𝑎(ℎ) = 𝜎(𝑧(ℎ))  (8) 

Where: 

 𝑊(ℎ) ∈ ℝ𝑚ℎ−1×𝑚ℎ is the weight matrix, 

 𝑏(ℎ) ∈ ℝ𝑚ℎ is the bias vector, 

 𝜎: ℝ𝑚ℎ → ℝ𝑚ℎ is the non-linear activation function, 

 𝑎(0) = 𝑥 is the input to the neural network. 

The layer dimensions are 𝑛 = 𝑚0 and 𝑚𝐻+1 = 𝑚. The activation functions 𝜎 considered include: the 
Rectified Linear Unit (ReLU), the sigmoid (Sigm), and the hyperbolic tangent (TanH). In our experiments, 
we focus on TanH ([14], [15]). 

The TanH function is defined as: 

𝑇𝑎𝑛𝐻(𝑧(ℎ)) =
𝑒𝑧(ℎ)

−𝑒−𝑧(ℎ)

𝑒𝑧(ℎ)
+𝑒−𝑧(ℎ)  (9) 

The Normalization Data: For the training process, it is essential that the data be normalized between 0 
and 1 before being applied to the neural network. This normalization is performed using equation 10 
[4]: 

𝑦 = 𝑦𝑚𝑖𝑛 +
(𝑥−𝑥𝑚𝑖𝑛)∙(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (10) 

In this equation, X represents the value of  the input data, while Xmin and Xmax are the minimum and 
maximum values of  the input data, respectively. Ymin and Ymax denote the desired minimum and 
maximum values for the normalized data, set to 0 and 1, respectively. This ensures that all input data are 
scaled within the appropriate range, facilitating stable and efficient processing by the neural network. By 
normalizing the data, the network can avoid issues related to disparate data ranges, allowing each input to 
contribute proportionally to the training process and improving the convergence rate and overall accuracy 
of  the model. 
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Processing of  Forecasting 

The processing of  forecasting involves preparing and adjusting data through normalization, training with 
an optimizer like Adam to minimize errors, and validating the model. This enables the neural network to 
make accurate and reliable predictions across various scenarios. 

 The input data for the backpropagation (BP) network consists of  representative values of  variables 
that directly influence the models expected output, such as solar irradiance, temperature, humidity, 
among others, depending on the specific application. These variables are essential for the BP 
network to learn complex patterns in the data. In the case of  artificial neural networks, each input 
variable is represented as X and is adjusted within a uniform range, ensuring that the network 
processes the information in a balanced way without any variable exerting excessive influence. 

 Data normalization is a critical step in the data preparation process before applying it to the BP 
network. For this project, the input data X is adjusted within a range from 0 to 1 using the 
normalization equation. This process allows the neural network to work more efficiently, avoiding 
scaling issues that could impact learning and enhancing the model’s stability and convergence rate. 

 The training algorithm used in a BP network with Adam optimization combines adaptive learning 
rate adjustment strategies to improve model accuracy based on gradients. The BP network uses 
backpropagation to adjust the weights of  the connections between neurons, reducing error at each 
iteration of  the training process. During each step, the algorithm calculates loss gradients based on 
normalized data, and using Adam, adapts updates in each parameter according to the gradient 
history, enabling stable learning even in the presence of  noisy data. This process ensures efficient 
convergence and optimizes model accuracy in complex scenarios. 

The neural network training algorithm shown in Figure 3 represents the construction and training of  a 
neural network in the Keras library through Algorithm 1. The process begins with configuring and defining 
the neural network architecture, specifying the type of  layers (such as dense, convolutional, recurrent, etc.), 
the number of  neurons per layer, and the activation functions used in each. 
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Fig. 3. Neural Network Training Algorithm 

In the next step, the algorithm shows how to compile the configured network, where the optimizer (such 
as Adam, RMSprop, or SGD), the loss function (such as MSE for regression or cross-entropy for 
classification), and the metrics to be used for model evaluation are defined. The model is then trained on a 
specified dataset, where the network weights are adjusted over multiple epochs, with parameters updated in 
each iteration to minimize loss. 
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Finally, the model’s accuracy is evaluated on test data, and performance results are displayed, allowing 
verification of  the effectiveness of  the training. This pseudocode provides an overview of  the construction 
and training of  neural networks in Keras, highlighting key steps and available configuration options. 

Irradiance Forcasting Result 

Irradiance forecasting is used for the planning and optimization of  solar energy projects, allowing facilities 
to anticipate changes in solar energy availability and adjust the operation of  storage or distribution 
systems. For an effective forecast, several key requirements must be met: 

 Accurate estimation of irradiance. The forecast must provide detailed estimates of irradiance in 
terms of intensity (W/m) and daily variations, adapting to different hours of the day. This accuracy 
is crucial because solar irradiance fluctuates based on factors like the suns position, altitude, 
and the tilt of solar panels. 

 Integration of data and atmospheric conditions. Fore- casting tools integrate data from satellites, 
local sensors, and advanced meteorological models to ensure a precise, up-to-date estimation. 
Additionally, forecasts must anticipate atmospheric conditions that impact irradiance, such as 
cloud cover, humidity, pollution, and dust, adjusting predictions in real-time 

 Coverage of different time horizons. Short-term (minutes to hours): Useful for immediate 
adjustments in operations and storage, with constant updates that respond to sudden weather 
changes. Medium-term (days): Facilitates generation planning and the use of backup sources for 
the coming days. Long-term (weeks to months): Supports maintenance planning and strategic 
scheduling, such as technical shutdowns during low irradiance periods. 
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Together, these elements ensure a reliable and optimized irradiance forecast, contributing to the efficiency 
and profitability of  solar energy. In this article, the days of  the year were used to train the algorithm; 
specifically, out of  the 365 days, 73 days were allocated for training the neural network, while the remaining 
days were used to validate the training, as mentioned in previous sections. 

Gradient and Weight Distribution 

Figure 4 shows the frequency distribution of  gradient values across different epochs during neural network 
training. The Y-axis represents data frequency, while the X-axis displays the gradient values. 

 

Fig. 4. Gradient Distribution 

This figure illustrates the variation in gradient distribution over 500 training epochs, with specific examples 
in epochs 1, 100, 200, 300, 400, and 500. It can be observed how gradient values fluctuate at each stage of  
training, indicating changes in the model’s learning dynamics. Initially, gradients are more concentrated 
near zero, and as training progresses, the dispersion of  gradient values also varies, reflecting the models 
gradual parameter adjustments. 

Figure 5 shows the frequency distribution of  weight values across different layers of  the neural network. 
The Y-axis represents the frequency of  the data, while the X-axis displays the weight values. This figure 
provides a visual representation of  the weight distribution across various layers of  the trained neural 
network, specifically in the layers labeled “dense 0” to “dense 9” and “dense 15” to “dense 19.” Each 
subplot corresponds to a distinct layer, facilitating the comparison of  variations in weight value distribution 
between layers. 
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Fig. 5. Weight Distribution 

It is observed that layers “dense 1” and “dense 16” show a notably higher concentration of  weights near 
zero, indicating smaller weight magnitudes in these layers. In contrast, other layers, such as “dense 3” and 
“dense 17,” exhibit a more dispersed weight distribution. These visualizations offer a de- tailed 
understanding of  how the network adjusts weights across different layers, which is essential for interpreting 
variability in learning and the neural network’s structure. 
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Comparison of  Neural Network Predictions Versus Actual Data Under Different Weather Conditions 

Figure 6 provides a visual comparison between actual data and predictions generated by the neural network 
at different points in time. The blue line represents the neural networks predictions, while the red line 
corresponds to the actual data. The Y-axis shows normalized data, with values between 0 and 1, while the 
X-axis indicates the quantity of  data used. 

Each subfigure is labeled with a specific date, as each one represents different weather conditions that 
impact solar irradiance, causing fluctuations and reductions. The data cover the period from 8:00 to 17:00 
hours. These results allow us to evaluate the performance and accuracy of  the neural network across 
different periods. In the subfigure corresponding to April 1, 2019, and May 18, 2019, the predictions 
closely follow the actual data, indicating high model accuracy at those times. However, on other dates, 
such as February 13, 2019, and July 8, 2019, a greater divergence between the red and blue lines is 
observed, reflecting a higher prediction error. 

This discrepancy arises because the training data were drawn from specific dates: April 1, 2019, August 
8, 2019, March 8, 2019, September 15, 2019, May 18, 2019, and June 25, 2019. In contrast, data from 
February 13, 2019, July 8, 2019, and November 15, 2019, were not included in the training set and 
therefore represent previously unseen conditions for the model. As a result, the model shows greater 
variance in its predictions for these dates, reflecting its limited ability to anticipate specific fluctuations in 
solar irradiance on days with different or less familiar weather patterns. 

This distinction between trained and validated days pro- vides insight into the model’s generalization 
capability. In Figures 6 (a)-(f), the neural network has been exposed to these specific dates during training, 
allowing it to learn and adjust its predictions closely based on these conditions. As a result, the 
predictions for these days typically show a high degree of  accuracy, with minimal error between the 
predicted and actual data. 

Conversely, Figures 6 (g)-(i) show days that were not included in the training set and serve as validation 
dates. These figures evaluate how well the model can generalize to new, unseen data. Because the network 
was not directly trained on these days, a greater discrepancy may appear between the predicted and actual 
values, revealing the model’s performance when encountering conditions slightly different from those it 
was trained on. 
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Fig. 6. Comparison Between Actual and Predicted Values Over Different Dates 

Analysis of  Training and Validation Loss Curves 

Figure 7 shows the loss curves during the training and validation of  a model over 500 epochs. The 
vertical axis represents the loss, which measures the model’s error, while the horizontal axis represents 
the training epochs. 

•  At the beginning (first epochs), both the training loss curve (blue) and the validation loss curve 
(orange) show a sharp decrease. This indicates that the model is learning rapidly from the data in 
the initial iterations, adjusting its parameters to minimize the error. 

•  As epochs progress, the loss curves start to stabilize, with small fluctuations around low values. 
This behavior suggests that the model has reached a minimum loss region where further 
adjustments do not significantly reduce the error. 

•  The training and validation loss curves are very close to each other for most epochs. This is a 
good indicator that the model is not overfitting the training data, as both losses are low and 
similar. 

•  Although the validation loss curve shows more fluctuations than the training loss, especially toward 
the end, these variations are not extreme, which is common in validation due to variability in the 
test data. 
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Fig. 7. Training And Validation Loss Curve. 

Forecast Error Distribution for Uptrend Vs. Downtrend 

Figure 8 shows a boxplot comparing forecast errors in uptrend and downtrend conditions. The data 
distribution high- lights that the errors in both trends (uptrend and downtrend) are quite similar. The 
median error is close to zero in both cases, indicating that the errors tend to be centered around zero 
for both trend conditions. There are several outliers in both trends, which may indicate that, in some 
cases, the errors are significantly higher than the average. The length of  the whiskers shows that the 
variability of  errors is similar for both uptrend and downtrend conditions. This analysis allows for an 
assessment of  the accuracy and consistency of  forecast errors in different trend directions. 

 

Fig. 8. Boxplot of  Errors in Uptrend Vs. Downtrend Trends 
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Conclusion 

This study demonstrates the effectiveness of  artificial neural networks in estimating solar irradiance in 
photovoltaic systems, particularly under variable climatic conditions such as those found in Lima, Peru. 
By employing a neural network model that uses meteorological data and output parameters from a real 
photovoltaic system, an accurate prediction of  solar irradiance was achieved. The simulation results, with a 
mean absolute percentage error (MAPE) of  less than 6%, validate the model’s robustness against 
meteorological fluctuations and highlight its adaptability to diverse atmospheric conditions. 

Analysis of  training and validation loss curves further supports the model’s reliability, showing close 
alignment between training and validation loss throughout the training process. This similarity indicates that 
the model achieves good generalization, with minimal overfitting, as the validation loss remains low and 
comparable to the training loss. Such behavior suggests the models ability to perform accurately on new, 
unseen data, enhancing its practical applicability in real-world scenarios. 

The median error is close to zero in both training and validation cases, indicating that the errors tend 
to be centered around zero for both trends. There are several outliers in both trends, suggesting that in 
some instances, errors are significantly higher than the average. The length of  the whiskers in the error 
distribution plot shows that the variability of  errors is similar under both uptrend and downtrend 
conditions, reflecting a consistent performance of  the model across different data trends. 

Additionally, the implementation of  normalization and optimization techniques, such as the Adam 
algorithm, contributed significantly to enhancing the model’s accuracy and efficiency. These findings 
underscore the potential of  this approach for predicting solar irradiance, enabling the optimization of  
energy generation in grid-connected photovoltaic systems. 
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