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Abstract  

Radiation therapy is crucial in cancer treatment, yet access remains limited due to inadequate infrastructure and workforce shortages. 
The integration of artificial intelligence (AI) in radiological workflows holds the potential to enhance efficiency and improve patient 
outcomes.This review analyzes the current landscape of AI applications in radiation oncology, focusing on various stages of the treatment 
process, including decision-making, treatment planning, and quality assurance. We evaluated the capabilities of AI techniques, 
particularly deep learning algorithms, in automating tasks such as image segmentation and dose optimization. The findings indicate 
that AI can significantly improve the accuracy and consistency of treatment planning by facilitating automated tumor delineation and 
enhancing image registration processes. Moreover, AI-driven predictive models have shown promise in forecasting treatment responses 
and optimizing radiation doses tailored to individual patient anatomies. However, the clinical adoption of these technologies is hindered 
by challenges, including the black-box nature of AI algorithms, the need for extensive validation, and concerns regarding data 
privacy.While the potential of AI to revolutionize radiation oncology is evident, significant barriers must be addressed before widespread 
implementation can occur. Future efforts should focus on developing interpretable AI systems, establishing robust validation frameworks, 
and integrating AI tools into existing clinical workflows to enhance the quality of cancer care globally. 
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Introduction 

Radiation therapy is an essential component of  cancer treatment and is recommended for around 50% of  
patients. Estimates suggest that millions of  patients now lack access to this essential therapy method due 
to obstacles such as insufficient infrastructure, technology, and human resources, including treatment 
facilities, equipment, and trained personnel. Moreover, radiation treatment has become increasingly intricate 
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in recent decades due to technological advancements, leading to a near-total dependence on human-
machine interactions including both software and hardware [1-4]. 

Notwithstanding technological advancements, a significant portion of  the radiation treatment process 
continues to need laborious, manual input from a varied team of  healthcare experts, including radiation 
oncologists, medical physicists, medical dosimetrists, and radiation therapists. The increasing intricacy of  
human-machine interactions, along with the rising prevalence of  cancer, has resulted in global shortages in 
the radiation oncology workforce and heightened diversity in service quality [5-8]. Variations in the radiation 
treatment-planning process have been shown to adversely impact overall survival, even within clinical trials, 
when efforts are made to standardize methodologies. The disparity in radiation treatment knowledge and 
experience between well-resourced and under-resourced healthcare systems represents a significant 
worldwide inequality in cancer care and is a substantial public health concern. 

Artificial intelligence (AI) encompasses the creation and use of  intricate computer algorithms to execute 
activities often necessitating human intellect, including visual perception, pattern recognition, decision-
making, and problem-solving, at an equivalent or enhanced level of  efficacy. Artificial intelligence is 
revolutionizing several medical disciplines and can tackle various issues encountered in radiation therapy, 
thereby enhancing the accessibility and quality of  cancer treatment globally [9,10]. This study examines the 
potential of  AI to revolutionize radiation oncology by detailing each phase of  the clinical workflow and 
illustrating instances where AI could improve the efficiency, accuracy, and quality of  radiation therapy, 
thereby augmenting value-based cancer care in contemporary resource-constrained healthcare settings. The 
potential uses of  AI in radiation oncology are many, and this article does not include them all. We want to 
provide an overview of  the revolutionary potential of  AI in radiation treatment and our insights about the 
future of  the radiation oncology workforce. 

Techniques f  Artificial Intelligence 

Initial AI platforms were built on rule-based reasoning executed by a computer system following a series 
of  processes and procedures established by human specialists. Nonetheless, the applicability of  these 
methodologies to variations in input data and job scope is sometimes constrained by the absence of  
'intelligent' components capable of  addressing 'edge situations' not expressly outlined in the knowledge 
base [11-14]. These rule-based AI systems have attained differing levels of  therapeutic value. In the last ten 
years, a significant transformation has taken place in the algorithms driving the automation of  image-related 
operations. This transition has been characterized by the resurgence of  neural networks; a category of  
machine learning algorithms loosely grounded on our assumed comprehension of  human brain 
functionality [15]. 

Research on neural networks has progressed from the mathematical formulation of  the backpropagation 
algorithm in the 1960s, which serves as the primary training method for neural networks by utilizing known 
outputs for each input to adjust the network's weights, to simpler networks in the 1980s. The growing 
volume of  available data, coupled with enhancements in computational power and algorithmic 
advancements, has rekindled interest in this research domain, resulting in the creation of  'deeper' neural 
networks featuring multiple intermediate hidden layers between the input and output layers [16,17]. Hidden 
layers serve to execute non-linear transformations of  input data to obtain feature information for the output 
layer. The use of  these algorithms has eliminated the need to predefine reasoning principles, since the 
configuration of  'hidden neurons' connecting input and output nodes may be autonomously acquired from 
the training data. This method endows deep learning algorithms with enhanced learning capacity compared 
to earlier AI algorithms, hence enabling them to identify intricate, non-linear correlations in data. 
Consequently, deep learning may start to mimic or even exceed human skills in very complicated tasks and 
has been used in several medical contexts [18,19]. 

The radiation treatment process encompasses several intricate activities, such as tumor and organ 
segmentation, dose optimization, outcome prediction, and quality assurance (QA), which have seen 
differing levels of  digitization and subsequent automation throughout time. This variability is also evident 
in the variety of  data used, including radiographic pictures, radiation dosage maps, device calibration log 
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files, and maintenance records. The multimodal characteristics of  deep learning architectures facilitate the 
integration of  diverse data streams, cross-modality learning, and algorithmic generalizability, thereby 
enhancing clinical decision-making and hence improving treatment quality for all patients [20]. 

UtilizationiIn Radiation Oncology 

The radiation therapy process consists of  various stages: initial treatment decision-making, treatment 
planning and preparation, quality assurance, administration of  radiation therapy, and subsequent follow-up 
care (Figure 1). The following sections delineate the principal responsibilities at each stage, the personnel 
engaged, and significant instances of  AI's possible facilitative functions. In process stages where we do not 
foresee a significant role for AI, such as the actual administration of  radiation, we have omitted instances 
[21]. 

 

Figure 1. Utilization of  AI Inside the Radiation Treatment Process. 

Preliminary Treatment Decision-Making 

The clinical radiation treatment process starts with patient admission and assessment. This stage generally 
entails consultation with the radiation oncologist, encompassing an evaluation of  the patient's symptoms, 
medical history, physical examination, pathological and genomic information, diagnostic assessments, 
prognostic considerations, comorbidities, and potential radiotherapy toxicities; the radiation oncologist then 
proposes a treatment plan derived from a synthesis of  these data [22-24]. A burgeoning issue for doctors 
engaged in this procedure pertains to the incessant collection of  data, beyond levels that humans can swiftly 
assimilate and comprehend. AI-driven techniques capable of  autonomously identifying essential clinically 
actionable attributes will be vital for developing decision support systems for physicians at the primary 
point of  care. Artificial intelligence methodologies for medical imaging evaluations and natural language 
processing for electronic medical records have shown preliminary potential in informing therapy choices 
and/or the clinical care of  cancer patients. The prediction of  the pathological response of  affected lymph 
nodes in patients with non-small-cell lung cancer undergoing chemoradiotherapy may guide the therapeutic 
choice to either continue with the therapy or advance to surgical intervention. Furthermore, AI-based 
models have shown the capacity to enhance prognostication and predict treatment outcomes; nevertheless, 
they have not yet been integrated into standard clinical practice [25-27]. 

The radiation oncologist establishes the recommended radiation dosage to the tumor and the dose 
limitations for adjacent organs before treatment planning, by nationally recognized standards and clinical 
trial data. Nonetheless, disparities in tumor biology may lead to significant variances in radiation sensitivity, 
even within the same cancer type [28,29]. Moreover, the geometrical configuration of  the tumor and 
adjacent organs may render the target dosage unattainable, a fact often overlooked until the planning phase 
is almost finalized. AI systems may facilitate the customization of  radiotherapy by forecasting the radiation 
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sensitivity of  the tumor and determining the best dosage prescription attainable with a particular treatment 
plan, depending on the outlines of  the tumor and surrounding organs [30,31]. 

Planning and Preparedness for Treatment 

Simulation sessions are conducted to prepare for treatment planning, during which the patient is 
immobilized to minimize significant movement, and medical photographs are typically obtained to aid in 
developing the treatment plan. The complexity of  this procedure varies by cancer location, and appropriate 
patient immobilization is subjective; thus, it often necessitates the collaboration of  a radiation oncologist 
and a medical physicist [30-32]. Special care must be given to assess possible interference between the 
immobilization device and treatment beam angles, as well as patient-specific factors that may lead to 
collisions with the treatment equipment. Analogous to the utilization of  AI in accelerating treatment 
planning predicated on a patient's anatomy, we hypothesize that AI may assist in recognizing potential 
challenges during treatment simulation by leveraging prior anatomical knowledge acquired through 
diagnostic imaging. Furthermore, it could propose solutions informed by algorithm training data, thereby 
streamlining and enhancing the planning process [33]. 

Numerous patients slated for radiation therapy need several medical imaging modalities for treatment 
planning, including CT pictures for radiation dosage calculation and MRI scans for tumor segmentation. 
Typically, these pictures are obtained with the patient in diverse postures (in the treatment position during 
CT, but in other positions during diagnostic imaging with other modalities), which adds ambiguity when 
aligning the images. One approach to reducing this uncertainty is to eliminate the need for CT by obtaining 
MRI data that may also provide electron density information, known as synthetic CT [34]. Artificial 
intelligence has been used to produce synthetic CT images from MRI scans of  the brain and pelvis, with 
negligible dosage discrepancies seen between treatment plans developed using synthetic CT and actual CT. 
This strategy may enhance clinical efficiency and save costs by decreasing the number of  imaging visits 
required for patients, while simultaneously minimizing their exposure to radiation from CT scans [35,36]. 

Technological advancements have resulted in the novel use of  MRI in directing radiation therapy, including 
the integration of  MRI scanners with linear accelerators into a unified treatment modality (MR Linac) [36-
38]. High-resolution, low-noise MRI pictures need extended acquisition durations; hence, a trade-off  must 
be established about the resolution and signal-to-noise ratios attainable within the allotted time for image 
collection and other clinical activities. Artificial intelligence may decrease MRI scan durations by facilitating 
the reconstruction of  intricate features from under-sampled MRI data, as shown by the use of  deep learning 
algorithms to produce high-resolution, high-contrast, and low-noise brain and heart MRI pictures from 
under-sampled data. Due to the intricacies involved in merging MRI scanners with radiotherapy linear 
accelerators—specifically, the distorting influence of  the magnetic field on radiation beams and the artifacts 
produced by linear accelerator components on the magnetic field—current MR Linac systems are 
constructed with low-strength magnets, generally ranging from 0.35 to 1.5 T, which diminishes image 
quality relative to the high-resolution images acquired from conventional high-field-strength MRI scanners. 
Artificial intelligence may facilitate the reconstruction of  high-signal, high-resolution pictures from low-
field-strength MRI scans (for instance, generating 7-T MRI-like images of  the brain from 3-T MRI data) 
to enhance tumor visibility during therapy [39,40]. 

Image registration is a crucial component of  the radiation therapy workflow, utilizing data from multimodal 
and longitudinal imaging not only during treatment planning but also immediately before the administration 
of  each treatment fraction, as well as for real-time monitoring of  radiation delivery [41-44]. Commercially 
available automatic image-registration algorithms are generally optimized for modality-specific registration 
issues and exhibit sensitivity to image artifacts, which undermines accuracy and frequently necessitates 
supplementary manual adjustments to attain clinically acceptable registration. AI tools have been developed 
to identify the sequence of  motion activities that provide the best picture alignment; these algorithms 
demonstrate superior accuracy and resilience compared to several state-of-the-art registration approaches 
and are applicable across numerous imaging modalities [45-47]. Moreover, AI methodologies have 
demonstrated efficacy in alleviating the impact of  image artifacts, such as those present in X-ray images of  
the spine due to metal screws and guide wires, as well as motion artifacts frequently observed in fetal MRI, 
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on registration precision. AI tools have been created for preliminary applications in MRI, X-ray, CT–MRI, 
and MRI–PET image registration. While several algorithms were not explicitly designed for radiation 
treatment, the issues they tackle are also encountered in this domain; so, these algorithms might enhance 
the radiation therapy process [48]. 

Image Segmentation and Dosimetric Treatment Planning 

At present, the manual delineation of  the main tumor and involved lymph nodes constitutes one of  the 
most labor-intensive but essential responsibilities undertaken by the radiation oncologist. The precision of  
tumor segmentation may directly influence outcomes: an inaccurately defined tumor may result in 
underdosing or overdose, hence diminishing the probability of  tumor control or increasing the risk of  
toxicities, respectively. Tumor segmentation exhibits inter-observer variability, even among professional 
radiation oncologists, potentially resulting in discrepancies in treatment plan quality and subsequent survival 
results [49,50]. Present semi-automated segmentation systems that use past information from reference 
pictures, such as segmentation atlases, are sometimes inaccurate or unavailable to most radiation oncologists 
due to exorbitant pricing and still need considerable human input [51]. Artificial intelligence can significantly 
enhance the efficiency, reproducibility, and quality of  radiation treatment planning through the 
implementation of  nearly fully automated segmentation techniques, exemplified by those created for the 
delineation of  nasopharyngeal carcinomas, primary lung tumors, and oropharyngeal carcinomas. The 
efficacy of  these segmentation algorithms closely parallels that of  human specialists. However, further 
research, especially prospective studies, is necessary to directly evaluate the efficiency, accuracy, and 
repeatability of  these AI tools in comparison to the existing gold-standard methods in the radiation therapy 
clinical workflow [52-55]. 

In radiation therapy planning, nearby organs to the tumor are segmented to assess the radiation dosage 
administered to these vital organs and to ensure it remains below acceptable thresholds. Initial AI tools 
have shown potential in identifying various organs in the body, including the intricate anatomy of  the head 
and neck, thoracic organs, kidneys, liver, and cardiac substructures; however, these results are constrained 
by small training datasets, leading to possible overfitting of  the AI algorithms [56,57]. The most extensive 
instance of  this methodology documented thus far pertains to a collaboration between the University 
College London Hospitals Department of  Radiotherapy and Google DeepMind, utilizing a training dataset 
of  CT images from 663 patients to create an algorithm proficient in segmenting organs in the head and 
neck region, achieving performance akin to that of  human experts. As commercially available AI-driven 
auto-segmentation technologies are increasingly integrated into treatment planning systems, supplementary 
tools are necessary for quality assurance to detect inaccuracies. The quality assurance of  auto-segmentations 
is a labor-intensive and time-consuming endeavor, representing another domain where AI-based QA 
solutions might diminish the necessary time and resources [58-62]. 

Upon receiving medical imaging, tumor, and organ segmentations, and the dosage prescription, the medical 
dosimetrist endeavors to create the ideal treatment plan for the patient, aiming to maximize the dose 
administered to the tumor while preserving adjacent organs. Treatment planning is a laborious, iterative 
procedure in which the dosimetrist formulates the dosage distribution, implementing modifications via trial 
and error to meet the objectives specified in the dose prescription [63,64]. The radiation oncologist 
thereafter assesses the treatment plan before its clearance for execution. The efficacy of  radiation therapy 
regimens is contingent upon several human variables, including the selection of  radiation beam angles and 
optimization parameters, leading to significant variances both within and across institutions [65]. 

Existing methodologies for standardizing and enhancing the effectiveness of  dosimetric treatment planning 
are not reliant on artificial intelligence; rather, they include the automation of  repetitive operations via 
rigidly specified rules and/or the optimization of  planning parameters by predetermined goals using 
statistical techniques. The used procedures are often tailored for certain anatomical locations and possess a 
restricted ability to accommodate changes in plan complexity and patient-specific considerations [66,67]. 

AI techniques for automating treatment planning consist of  two primary steps: 1) forecasting the ideal 
dosage distribution, and 2) determining the necessary treatment machine settings to realize that distribution 
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[68]. Numerous research indicates that deep learning algorithms can anticipate appropriate dose 
distributions for individual individuals based on their anatomy and expedite dosage computations [69-72]. 
For AI-driven treatment-planning algorithms to produce a high-quality plan, it is essential to incorporate 
information about the intricate decision-making process into the foundational model, akin to the 
methodologies employed in the creation of  AI algorithms capable of  playing Atari games or the board 
game Go. In retrospective studies, researchers have utilized gamification concepts to autonomously create 
treatment plans for high-dose-rate brachytherapy in cervical cancer patients or radiation dose modification 
in non-small-cell lung cancer patients, achieving performance comparable to or exceeding that of  human 
planners. AI techniques possess the capacity to significantly enhance this vital phase of  the radiation 
workflow, initially by forecasting achievable radiation dose distributions to enable radiation oncologists to 
determine the most effective treatment strategy, and subsequently by formulating the treatment plan for 
the administration of  the optimal radiation dose. Consequently, AI may facilitate the complete automation 
of  the treatment-planning process shortly [73]. 

Obstacles To Clinical Execution 

The clinical use of  AI in radiation oncology presents a significant obstacle to its potential; using AI tools 
necessitates an initial commitment of  time and money, alongside efforts to comprehend their value and 
limits, and to reconfigure existing clinical processes. Numerous AI technologies are still in the proof-of-
concept phase and require external validation, leading to a sluggish integration into standard practice, hence 
rendering the demonstration of  generalizability and efficacy unachievable [75]. Establishing confidence in 
AI systems is essential due to the 'black box' characteristics of  several machine learning techniques, 
particularly deep learning. Despite ongoing research into the 'interpretability' and 'explainability' of  AI—
referring to the comprehension of  an algorithm's operations and its underlying mechanics, respectively—
the opacity of  AI impedes our capacity to comprehend outputs, anticipate failures, and address 
generalizability challenges. Failure to regularly monitor the performance of  deployed AI tools and to 
continuously evaluate the suitability of  training data for the specific issue may lead to a rise in mistakes due 
to the introduction of  systematic biases into these systems [76]. 

Present AI tools lack perfect accuracy, and three criteria can assess their viability for clinical application: 1) 
the time allotted for and the user's capacity to evaluate the accuracy of  the results; 2) the possibility of  
rectifying erroneous outcomes; and 3) the implications of  errors for a patient. A clinical implementation 
may be quite simple, even in instances with potentially grave implications, provided that model mistakes are 
identified and rectified before advancing to the subsequent phase of  the radiation process [77]. The 
feasibility of  clinical application will diminish if  the time and skill needed for the user to assess the 
correctness of  the results surpass the efficiency or accuracy benefits provided by the AI tool. Moreover, 
the risk-to-benefit ratio of  using the AI-based tool is much more difficult to ascertain in scenarios where 
the user is unable to evaluate the accuracy of  the outcome (for instance, when a tumor is not discernible in 
an image and an AI tool is used for auto-segmentation). AI-assisted or completed tasks that significantly 
impact a patient's therapy provide a distinct difficulty for clinical application because of  their possible 
consequences for the patient. 

A comprehensive legal framework for regulating algorithmic decision-making remains undeveloped, 
particularly with patients' rights to receive explanations for algorithmic outputs and the ramifications of  
data protection legislation. Artificial intelligence can diminish medical mistakes, however, it is likewise 
anticipated to transform the legal framework concerning clinical liabilities and obligations. The heightened 
use of  AI will alter the dynamics of  the patient-doctor connection, presumably transitioning towards a 
patient-healthcare system interaction, hence potentially diminishing the doctor's responsibility for the 
patient. Ethically, algorithms used for face recognition and estimating recidivism risk have shown intrinsic 
racial prejudices, and the implementation of  AI in healthcare is beginning to reveal analogous issues. 
Furthermore, immoral AI methodologies may be devised by entities with hidden agendas to manipulate 
outcomes for financial advantage. All these issues must be resolved to allow the successful general clinical 
deployment of  AI-based solutions [20,45]. 
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Consequences for Medical Dosimetrists 

Medical dosimetrists now execute several manual treatment-planning jobs that are likely to be replaced by 
AI methodologies. Research indicates that discrepancies in the quality of  treatment plans are mostly due to 
the overall 'planning competence,' rather than factors such as experience, certification, or education. This 
discovery emphasizes the prospective advantages of  automating dosimetrists' responsibilities, particularly 
the potential to reduce the variability of  treatment provided. The feasibility of  automating treatment 
planning to alleviate the labor of  medical dosimetrists is purportedly contingent upon the clinical precision 
of  the produced plans [36,67]. Additional evidence is needed to instill enough confidence for a transition 
to full automation; nonetheless, results from preliminary experiments have shown encouraging promise. 
Shortly, we anticipate that the responsibilities of  dosimetrists will concentrate on higher-risk and more 
intricate scenarios that pose challenges for existing AI methodologies. We anticipate that AI-driven 
automation will significantly disrupt this profession in the long future. The 2017 American Association of  
Medical Dosimetry salary survey indicated that 45% of  respondents said they were impacted by 
understaffing. Automation may reduce the workload of  dosimetrists to achieve optimal staffing levels, while 
it might result in significant decreases in the number of  dosimetrists employed [78]. 

Radiation therapists act as the ultimate safeguard in treatment administration to maintain patient safety and 
prevent the misadministration of  radiation. As previously stated, AI has the potential to offer software tools 
that assist radiation therapists in delivering precise and safe treatment while enhancing efficiency and patient 
accessibility; nonetheless, we contend that radiation therapists will maintain a crucial role in overseeing the 
operation of  these automated systems and the patient [54]. 

Conclusions 

In addition to improvements in accuracy, repeatability, and consistency, the collaboration between human 
intuition and AI's ability to use extensive data from huge datasets might significantly enhance efficiency and 
throughput in radiation treatment. These advantages have attained paramount significance in the 
contemporary context of  cost reduction, alongside the transition from fee-for-service to value-based care. 

The global health landscape is poised to gain from AI-based initiatives. More than fifty percent of  cancer 
patients reside in low-income or middle-income nations. In resource-constrained environments, workforce 
and equipment shortages have resulted in over 50% of  patients anticipated to benefit from radiation lacking 
access to this treatment, with figures reaching as high as 90% in some low-income nations. AI software 
solutions aim to mitigate some shortages by delivering specialized expertise across various illness locations 
and treatment approaches. The potential of  AI to resolve hardware equipment shortages is uncertain; 
nonetheless, it may assist in maintaining current equipment by enhancing the interpretation of  machine 
quality assurance data. 

The introduction of  AI tools will significantly alter the composition and skill set of  the radiation oncology 
workforce; however, these modifications are expected to be largely beneficial, facilitating enhanced 
efficiency and improved quality of  care while reducing costs. 
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 دمج الذكاء الاصطناعي في العلاج الإشعاعي: التحديات والفرص في سير العمل السريري

 الملخص

يعُد العلاج الإشعاعي عنصرًا أساسياً في علاج السرطان، ومع ذلك، يظل الوصول إليه محدوداً بسبب نقص البنية التحتية وقلة  :يةالخلف

في سير العمل الإشعاعي إمكانات كبيرة لتعزيز الكفاءة وتحسين نتائج  (AI) الكوادر المتخصصة. يحمل دمج الذكاء الاصطناعي

 .المرضى

هذه المراجعة الوضع الحالي لتطبيقات الذكاء الاصطناعي في علم الأورام الإشعاعي، مع التركيز على مراحل مختلفة تحلل  :المنهجية

من عملية العلاج، بما في ذلك اتخاذ القرارات، تخطيط العلاج، وضمان الجودة. قمنا بتقييم قدرات تقنيات الذكاء الاصطناعي، لا سيما 

 .أتمتة المهام مثل تقسيم الصور وتحسين الجرعاتخوارزميات التعلم العميق، في 

تشير النتائج إلى أن الذكاء الاصطناعي يمكن أن يحسن بشكل كبير دقة وتناسق تخطيط العلاج من خلال تسهيل تحديد الأورام  :النتائج

التنبؤ  لذكاء الاصطناعي وعوداً فيتلقائياً وتعزيز عمليات تسجيل الصور. علاوة على ذلك، أظهرت النماذج التنبؤية التي تعتمد على ا

باستجابات العلاج وتحسين جرعات الإشعاع المخصصة بناءً على تشريح كل مريض. ومع ذلك، فإن تبني هذه التقنيات سريرياً يواجه 

لقة المتع تحديات، بما في ذلك الطبيعة "الصندوق الأسود" لخوارزميات الذكاء الاصطناعي، الحاجة إلى التحقق الشامل، والمخاوف

 .بخصوصية البيانات

على الرغم من أن إمكانات الذكاء الاصطناعي لإحداث ثورة في علم الأورام الإشعاعي واضحة، يجب التغلب على عوائق  :الخلاصة

ير، سكبيرة قبل أن يصبح تنفيذه واسع النطاق ممكناً. يجب أن تركز الجهود المستقبلية على تطوير أنظمة ذكاء اصطناعي قابلة للتف

وإنشاء أطر تحقق قوية، ودمج أدوات الذكاء الاصطناعي في سير العمل السريري الحالي لتعزيز جودة رعاية مرضى السرطان على 

 .مستوى العالم

 الذكاء الاصطناعي، العلاج الإشعاعي، سير العمل السريري، علاج السرطان، التعلم العميق :الكلمات المفتاحية
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