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Abstract  

The objective of this study was to develop a model for predicting future alterations in land use as well as land cover (LULC) within 
the low folded zone of Iraq by utilizing remote sensing data spanning for the period from 2000 to 2020. An integrated Cellular 
Automata-Artificial Neural Network (CA-ANN) methodology which is provided by the Molusce Plugin model in QGis was 
employed to produce Land Use and Land Cover (LULC) maps for the years 2020, 2040, 2060, and 2100. The results of the 
validation K (overal)= 0.83499, K(location)= 0.8586, K(histo) = 0.97245, % of correctness =93.044 and R²= 0.9997 
demonstrated a high level of concordance between the classed maps and the maps generated by the model. Future predictions demonstrate 
that the built-up land will increase (from 2481.95 to 16347.77 km²), barren land, water bodies, (Dense, Sparse) vegetation, 
Plantation, and Agricultural fallow and Agricultural land will decrease (from 22595.4 to 19129.18 km²), (from 672.1 to 562.29 
km²), (from 1059.83 to 425.73 km²), (from 962.50 to 320.20 km²), (from 1196.75 to 428.5 km²), (from 15172.0389 to 
10644.1551 km²) and (from15877.071 to 12408.32 km²) respectively. The decrease in the future agricultural land will impact the 
water and food security of this zone.These forecasts can assist in recognizing probable ecological consequences, such as alterations in 
water availability, agricultural stability, and the depletion of natural habitats. In general, MOLUSCE is a beneficial instrument for 
forecasting and evaluating forthcoming changes in land use and land cover (LULC), as well as aiding in the promotion of sustainable 
land use planning endeavors. The implications of the findings are significant for a range of stakeholders, such as urban planners, 
policymakers, environmental scientists, conservation biologists, non-governmental organizations (NGOs), and water resources managers. 
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Introduction 

Alterations in land use and land cover (LULC) exert a substantial and immediate impact on both local and 
global environments, leading to climate change, deterioration of  ecosystem services, and land degradation 
[1]. Due to the swift increase in the global population and the advancement of  society, the speed and 
magnitude of  these transformations have surpassed historical rates, resulting in significant disturbances to 
Earth's landscapes [2]. On a global scale, urban land area has expanded by 346.4 thousand km² at a growth 
rate of  1.3% between 1992 and 2016 [3]. Furthermore, given the current patterns in population density 
change, it is anticipated that by 2030, urban land cover will increase by 1.2 million km². [4]. As a result, 
precise measurement and forecasting of  LULC changes in the present and the future are essential for 
efficient environmental management and long-term planning. 

Satellite remote sensing data has gained prominence with the advancement of  satellite sensors, providing 
frequent and comprehensive spatial and temporal coverage for monitoring LULC changes. Geospatial 
modelling techniques have been employed in several studies to estimate future changes in land use and land 
cover (LULC) by considering present circumstances and influential factors like population growth and 
environmental stressors [5-8]. To unravel the mechanisms driving LULC changes, various modeling 
techniques have rapidly progressed in terms of  spatial analysis, simulation, and predicting transition 
potentials. Simulation models that are effective and reproducible play a crucial role in understanding the 
determinants and projections of  past, present, and future LULC changes across different contexts. 
Researchers have proposed several spatially distributed models, such as Dinamica [9], Markov-FLUS [10], 
SLEUTH cellular automata [11], artificial neural network-Markov chain [12], CA-ANN [13], and CLUE-S 
[14], to analyze and project LULC changes. Each model offers a unique approach to address the 
complexities of  LULC changes. Neural network models, known for their ability to accurately capture 
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nonlinear spatially probabilistic land-use transformations, are popular for simulating LULC changes [15]. 
Cellular automata (CA) models are effective tools for understanding land-use systems and the dynamics 
that underlie them, especially in conjunction with other methods like ANN. The CA-ANN model, 
leveraging "what-if" scenarios, finds applications in development and land change simulation studies [16–
18] Artificial Neural Networks (ANN) may effectively address challenges emerging from diverse sources 
by employing nonparametric, nonlinear, and stochastic approaches for modelling and predicting Land Use 
and Land Cover (LULC) changes. The ANN's capacity to learn from diverse datasets enabled the model to 
effectively navigate intricate settings in the simulation. [19]. Along with geospatial technology and big data 
from remote sensing, traditional approaches based on change detection mechanisms and historical records 
are used to identify trends in the landscape and produce reliable scientific results and policy 
recommendations. In especially in quickly growing metropolitan areas, these strategies help planners and 
authorities promote sustainable development [20-22]. Consequently, transitional potential modeling and 
anticipating future LULC changes under the influence of  geographical variables aim to identify past and 
potential future change locations. Most of  these models employ temporal land-use data and incorporate 
geographical characteristics to forecast future LULC scenarios [23]. 

Both anthropogenic and natural events, such as war and drought, have had a considerable impact on LULC 
in Iraq during the past few decades, leading to significant changes in the region [24, 25]. However, an 
accurate estimation of  LULC in the low folded zone- Iraq is currently lacking, and official Iraqi government 
statistics may be unreliable [26]. In this study, the Modules for Land-Use Change Simulation (MOLUSCE) 
plugin within QGIS (an open-source model) was employed to analyze, model, and simulate LULC changes. 
The plugin incorporates various algorithms, including artificial neural networks (ANNs), multi-criteria 
evaluation (MCE), weights of  evidence (WoE), logistic regression (LR), and Monte Carlo cellular automata 
(CA) models. By utilizing the CA-ANN technique and remotely sensed big data from 2000 to 2020 with a 
ten-year interval, simulated spatiotemporal transitioning possibilities and predicted future LULC changes 
for the years 2040, 2060, 2080, and 2100. The spatiotemporal change analysis and prediction of future 
changes in land use and land cover are evaluated for the first time in this research in the Low Folded Zone, 
Iraq. The findings of this study offer valuable insights for land use planners to enhance their decision-
making process within the context of sustainable land use planning. 

Materials and Methods 

Study Area 

The Low Folded Zone comprises a significant portion, specifically 13.6%, of Iraq's total geographical area, 
covering a vast expanse measuring 56930 square kilometers. The geographical position of the region is 
situated in the north and northwest central regions of Iraq, as illustrated in Figure 1a. The topography of 
this region exhibits a gradual elevation gradient, commencing from the southwestern boundary at an 
elevation range of 125 to 300 meters above mean sea level, and progressively ascending toward the northern 
and eastern perimeters, where it attains altitudes that range from 900 to one thousand meters above mean 
sea level. The geographical area being examined includes many notable aquifers, specifically the Fatha, 
Injana, Mukdadiyah, Bai Hassan Constructions, and Quaternary deposits [27]. The Low Folded Zone 
consists of thirteen sub-provinces, as seen in Figure 1b. 
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Figure 1: (A) Location Map of The Study Area And (B) Sub-Provinces of The Study Area. 

Dataset 

Landsat satellite images from three years prior, specifically from 2000, 2010 and 2020, makes up the dataset 
used in this study. The imagery displaying the least amount of  cloud cover were acquired from the Earth 
Explorer site, which was maintained by the US Geological Survey (USGS). 

Dataset Pre-Processing and Classification 

Before performing the classification procedure, the satellite images were subjected to rectification for 
radiative and environmental noises using the FLASH settings (atmospheric correction tool in remote 
sensing) of  the environment 5.2 platforms. The rectification process plays a critical role in obtaining 
accurate numeric surface data from the image. The coefficients obtained from the picture data were 
employed in the rectification process [28].  

The acquired imaging pictures captured within the identical temporal window and calendar year were 
merged utilizing a mosaic approach. Following this, the relevant study area was demarcated and separated. 
Different combinations of  bands were employed in order to improve the accurate identification of  surface 
features before collecting data for retraining or generating spectra signature data for categorization. The 
Thematic Mapper (TM) employed the band arrangement of  RGB 4, 3, 2, whereas the Operational Land 
Imager (OLI) utilized the band mixture of  RGB 5, 4, 3. The classification of  various land use and cover 
(LULC) classes was conducted by the researchers, who considered the professional knowledge of  the 
research area's physiography, together with relevant additional data. The data presented aided in the process 
of  delineating and discerning the probable feature categories through the utilization of  the training samples. 
The study classified many types of  land use and cover (LULC) groups, including heavy vegetation, sparse 
vegetation, agricultural land, abandoned agricultural land, plantation, built-up areas, and barren terrain. The 
aforementioned classes are displayed in Table 1. 

This table provides descriptions of  different classes of  land cover and land use (LCLU) observed within 
the research region.  
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Table 1: Description of  the LCLU Classes 

 

Methods and Inputs  

In this study, the MLP-ANN learning technique of  the Cellular Automata (also known as the CA model) 
was employed to incorporate Land Use and Land Cover (LULC) alterations, which were characterized by 
transition probabilities. The method of  predicting land use and land cover (LULC) in eight stages was 
conducted using Quantum GIS, a geographic information system software, together with the MOLUSCE 
plugins [29]. The initial step involved incorporating land use and land cover (LULC) shift maps for the 
initial year (2010) and final year (2020) into the model. A LULC change map was generated to depict the 
patterns of  transformation in the research area between 2010 and 2020, utilizing data compiled from 
various sources including the Digital Elevation Model (the DEM), aspect ratio map, slope chart, and 
Euclidean distance. 

The United States Geological Survey (USGS) provided a raster image format with a single pixel quality of  
30 meters, from which the classified land use and land cover (LULC) maps were obtained. The subsequent 
stages of  the model were dependent on the utilization of  these maps as their primary source of  input. The 
MLP-ANN plugins (multilayer perception) were employed to forecast land use and land cover (LULC) 
alterations by considering the fluctuating percentage of  the area over the course of  multiple years. The 
study identified and categorized eight distinct land use types, including built-up areas, barren land, water 
bodies, dense vegetation, sparse vegetation, plantations land for agriculture, and agricultural wasteland. The 
map additionally depicted discrepancies within each of  these regions. 

To quantify the variation in pixel values representing different land use protections, a matrix was developed. 
In order to project future land use and land cover (LULC) maps, a fundamental presumption of  continuity 
in current patterns and dynamics of  LULC was used. Figure 2 illustrates the projected land use and land 
cover (LULC) transition map for the years 2040, 2060, 2080, to 2100. This projection is based on the 
analysis of  classified raster images obtained from the United States Geological Survey (USGS) between 
2000 and 2020.  

 

 

Class Description 
  

  

Built-up area Settlements: Man-made Infrastructure   

Barren land 

Barren landscapes devoid of conspicuous vegetation, particularly lacking any 
discernible clusters of trees or shrubs. The landscape consists of exposed rocks, hills, 
soil, barren ground, rocky formations, and open terrain devoid of vegetation. 

  

 

Waterbody 
Water bodies refer to several types of aquatic environments, such as rivers, fishponds, 
lakes, and streams. 

  

Dense 
vegetation 

Highly concentrated areas of vegetation, primarily consisting of forests and thick 
shrublands. 

  

Sparse 
vegetation 

Dispersed areas with sparse mixed forests, shrublands, and patches of grassland   

Plantation 
The landscape consists of densely vegetated areas arranged in a structured manner, as 
well as woods and green spaces 

  

Agricultural land Presently, there is cultivated area that exhibits a noticeable verdant hue.   

Agricultural 
fallow 

The footage clearly displays croplands, although there are currently no crops present. 
The unique geometric features of agriculture are clearly evident.   
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Fig.2 Methodology Flowchart of This Research 

Evaluation Correlations and Area Change 

MLP − ANN And Transition Potential Modeling  

The study evaluated the associations between the two raster images using statistical metrics including 
Pearson connection, Cramér coefficient, and joint uncertainties in data [29].   Subsequently, the changes in 
land use and land cover (LULC) classes were calculated for the period between 2000 and 2020.   The method 
generated a change matrix to visually depict the variations in pixel modifications among several categories.   
This phase aimed to precisely quantify the changes in land area, measured in square kilometers (km²), that 
existed between the land use and land cover (LULC) classes of  2000 and 2020 [30, 31]. 
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To construct probabilistic shift maps for land use and land cover (LULC) changes, one can utilize many 
techniques such as MLP-ANN, WoE, LR, and Multi-Criteria Evaluation (the MCE).   These methods have 
been employed to statistically and geographically calibrate and simulate land use and land cover changes 
[32, 33].  In this study the MLP-ANN forecast method was employed which was integrated as a plugin, to 
predict the LULC map.   In order to evaluate the precision of  the projected land use and land cover (LULC) 
maps, the Kappa factor (equations 1-3) was utilized. 

 Kappa = 
𝑝ₒ−𝑝ₑ

1−𝑝ₑ
            (1) 

where,. Pe indicates the percentage of  expected agreements, and Pₒ, indicates the percentage of  actual 
agreements. 

Pₒ=∑ 𝑃𝑖𝑗
𝑐
𝑖=1                          (2)  

                      

Pₑ= ∑ 𝑝ᵢ 𝑇ᵢ𝑐
𝑖=1 𝑇𝑗                   (3)    

A contingency table is used to visually represent the relationship between the iᵗʰ and jᵗʰ cells by displaying 

the frequency patterns of variables in a matrix format.   The variables 𝑇ᵢ and 𝑇𝑗  represent the total sum of 

all cells in the iᵗʰ and jᵗʰ columns, correspondingly.   At the same time, the variable c represents the number 
of raster categories.   The contingent table is employed to calculate and arrange the relationships between 
individual cells, while also producing a measure for each respective cell [34]. 

This study combined the LULC data and MLP-ANN as resources to calibrate and model changes in land 
use/land cover. The enormous data uncertainty presented a substantial problem during the execution of 
the approach.   Therefore, a continuous index spanning from 0 to 1 was used to describe the topography.   
The artificial neural networks utilize fuzzy logic to determine a range of values between 0 and 1, based on 
the usefulness of the terrain.   Artificial neural networks (ANNs) rely on the interaction of interconnected 
neurons and the modification of synaptic interconnections among them [ 35]. 

Annual Rate of Change Analysis 

To ascertain the annual pace of shift for each land use type, the magnitude of shift between successive years 
was computed by subtracting the initial year values from the end-year value.   The quotient of this 
discrepancy was obtained by dividing it by the initial year value and the duration of time.   Equation (4) was 
utilized to assess the spatial and temporal magnitude and rate of variation in land use and land cover (LULC) 
groups.  

𝐴𝑅𝐶% = 
𝑓𝑦−𝐼𝑦

𝐼𝑦∗𝑡
     *100             (4) 

where t is the time interval, 𝐼𝑦 ,and 𝑓𝑦 , are the beginning and final year areas, respectively, and ARC is the 

annual rate of change in LULC categories (%). 

Validation 

The validating module of  MOLUSE (prediction model), was utilized to verify and confirm the produced 
image of  2020. The validation technique entailed a juxtaposition of  the simulated image with the classified 
2020 Land Use and Land Coverage (LULC) map.   The core technique utilized by MOLUSE is based on a 
back-propagation mechanism, which is an iterative neural network approach that relies on learning.   The 
neural network structure consists of  three separate layers: the input layer, the hidden layer, and the output 
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layer.   During each iteration, every neuron within the output layer generates a transition probability, which 
indicates the possibility of  changing between different land use classes.  

By examining the transition probability values, it is possible to forecast the changes in land use and land 
cover (LULC) beyond one classification to another. The highest transition probability indicates the most 
likely new category.   If  a LULC type has the highest probability of  transitioning, the status of  the 
corresponding cell will not change.   To evaluate the accuracy of  the forecasts, many measures were 
calculated, such as the proportion of  correct predictions (accuracy), the overall kappa factor, the histogram 
kappa factor, and the local kappa coefficient.   Once a satisfactory level of  precision was achieved, the 
cellular automata simulation step was repeated to forecast future changes in the LULC.  

Result and Discussion 

Spatiotemporal Change Analysis  

In order to check and validate the 2020 image, the verification module of  the prediction model MOLUSE 
was used.   the categorization of  2020 LULC map next to the simulated image was used in the validation 
procedure.   An incremental neural network forms the basis of  the MOLUSE algorithm's back-propagation 
learning method.   There are three distinct layers that make up a neural network: input, hidden, and output.   
Every output layer neuron calculates a transition probability throughout each cycle, which represents the 
likelihood of  switching between land use groups.  

LULC maps for this study were created by classifying Landsat satellite images.   For the years 2000, 2010, 
and 2020, three LULC maps were made to depict the low folded zone.   The maps can be seen in Figures 
3a, 3b, and 3c.  

 The data of  the LuLc area and annual rates of  change are shown in details presented in Table 2 for each 
seven legends.   As shown in Figure 3, the fast expansion of  the built-up area was the primary driver of  the 
major change in land use that occurred throughout the research period.   The Built-up area grew 
substantially, increasing from 986.39 km² to 2481.95 km² during (2000-2020), at a pace of  7.58% each year.   
The extent of  barren land rose from 22,293.12 km² to 22,595.41 km², which represents an increase of  
0.067% each year.   Plantation, agricultural land, and Agricultural fallow increased significantly during the 
years 2000,2010 and 2020.   All these parameter values were within a range of  (934.81 to 1196.74 km²), 
(14,954.39 to 15,172.03 km²), and (15,483.12 to 15,877.1 km²), respectively.  

As a counterpoint, the Waterbody region had a decline of  672.11 km², which represents a loss rate of  0.64% 
per year (from 770.77 to 672.11 km²). The amount of  dense vegetation decreased from 3994.1 km² to 
1059.83 km² during the period 2000 to 2020, while the area of  sparse vegetation reduced from 1156.53 km² 
to 962.50 km².  
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(a)                                                                                          (b) 

 

                                        (c) 

Fig. 3 LULC maps for a) 2000, b) 2010 and c) 2020 

Table 2. LULC Area And Annual Rate of  Change (ARC) For the Periods 2000-2020. 

 

km² % km² % km² %

Built-up area 986.39 1.63 1434.79 2.39 2481.95 4.14 7.580956413

Barren land 22293.12 36.80 29596.20 49.31 22595.42 37.65 0.067799585

Waterbody 770.78 1.27 673.17 1.12 672.11 1.12 -0.640020411

Dense vegetation 3994.09 6.59 1105.49 1.84 1059.84 1.77 -3.673244883

Sparse vegetation 1156.54 1.91 823.41 1.37 962.50 1.60 -0.838859089

Plantation 934.82 1.54 531.57 0.89 1196.75 1.99 1.400975462

Agricultural land 14954.40 24.69 9312.60 15.52 15172.04 25.28 0.072768734

Agricultural fallow 15483.13 25.56 16538.83 27.56 15877.07 26.45 0.127217626

ARC %LULC Type
2000 2010 2020
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Change in the Probability Matrix 

The values of  the probability matrix's elements for the LULC categories were altered for the years 2000–
2020. With the exception of  the high values for the diagonal cells, which stay in their original category, 
Table 3 demonstrates that higher values signal more significant changes. 

Table (3). Probability Matrix Values for the Lulc Elements From 2000 to 2020 

 

Model Validation 

Some of the algorithms used to describe transition potential in the MOLUSCE plugin include cellular 
automaton (CA), multicriteria assessment, logistic regression (LR), weights of proof, and multilayer 
perceptron (ANN). In order to model and predict the possibility of transitions, the current study employed 
the CA-ANN approach. 

For the purpose of model calibration, spatial variables were selected for inclusion in the model, if they 
showed a statistically significant connection with LULC, as assessed by Cramer's coefficient. To make 
LULC predictions for the year 2020 as shown in figure 4, LULC data was used from 2000–2010 in 
conjunction with the geographical considerations. Following this, the anticipated LULC was compared with 
the actual LULC data for the year 2020. The model's validation results were quite good, with a 93.044% 
accuracy kappa, an overall kappa of 0.83499, a kappa value that was location-specific of 0.85865, and a 
kappa value that was histogram-specific of 0.97245 as shown in Table 4 and Figure 5. These outcomes 
show how reliable the model validation will use for future issues. 

The model was quite good for predicting the presence of various land types. Figure 5 shows the current 
and projected LULC map values for the period 2020 and the Kappa statistics  

Class Built-up area Barren land Waterbody Dense vegetation Sparse vegetation Plantation Agricultural land Agricultural fallow Sum

Built-up area 0.522 0.149 0.004 0.021 0.012 0.012 0.186 0.095 1

Barren land 0.022 0.517 0.000 0.008 0.010 0.013 0.227 0.202 1

Waterbody 0.026 0.007 0.828 0.073 0.026 0.014 0.022 0.006 1

Dense vegetation 0.074 0.110 0.037 0.254 0.097 0.090 0.246 0.094 1

Sparse vegetation 0.072 0.161 0.021 0.093 0.120 0.085 0.263 0.184 1

Plantation 0.067 0.124 0.016 0.085 0.063 0.137 0.254 0.253 1

Agricultural land 0.046 0.187 0.002 0.021 0.022 0.029 0.374 0.318 1

Agricultural fallow 0.027 0.302 0.001 0.009 0.011 0.016 0.246 0.387 1
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Fig 4. Actual and Projected LULC 2020 

 

Fig. 5 Comparison of  The LULC Observed Data with The Predicted Data for The Year 2020. 

 

 

 

 

 

 

  
 

Actual 2020 Projected 2020 
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Table 4. Actual and Projected LULC Of 2020. 

 

 By comparing the modeled LULC map to a reference map, the MOLUSE model's built-in VALIDATE 
module may validate it. To validate the data, several Kappa statistical variants were computed which measure 
the degree of  agreement or disagreement between the associated class groups. Figure 5 displays the 
outcomes of  these Kappa statistics. R², along. Figure 6 shows a comparison of  the two maps, which 
produced an amazing R² value of  0.9997. The results are in agreement with those of  an earlier study [35], 
which found an R² of  approximately 0.90 comparing the real and simulated LULC maps. Based on the 
Kappa statistics and the coefficient of  determination, these validation results show that the reference map 
and the modeled LULC map are quite accurate and in good agreement with one another. 

 

Fig. 6 The Relationship Between the Actual and Predicted (Modeled) LULC Maps Of  2020 

Prediction of LULC 

After obtaining satisfactory results from the model validation, the future LULC for 2040, 2060,2080, and 
2100 was predicted by using. the temporal LULC data from 2000 to 2020 as Figure (7), (8) and Table (5) 

km² % km² % Overal Histo Loc

Built-up area 2481.95 4.14 2438.75 4.07

Barren land 22595.42 37.65 22960.59 38.29

Waterbody 672.11 1.12 672.05 1.12

Dense vegetation 1059.84 1.77 1059.25 1.77

Sparse vegetation 962.50 1.60 962.10 1.60

Plantation 1196.75 1.99 1196.22 1.99

Agricultural land 15172.04 25.28 14815.17 24.70

Agricultural fallow 15877.07 26.45 15864.51 26.45

o.834 0.9724 0.8586 93.044

LULC Type
Actual Projected Kappa value

% of correctness
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Fig. 7 The Modeled Land Cover Land Use of Low Folded Zone (A) 2040 (B) 2060 (C) 2080 (D) 2100 

 

 

                                 (a) 

 

                               (b) 

 

 

                                        (c ) 

 

                                     (d) 
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Table 5. Area and Percentage of the Prediction Land Cover Land Use Classes 

 

 

Fig (8). Area Percentage (%) of Changes Per Class Category for The Period 2020-2100  

The changes in land cover categories from 2020 to the predicted year 2040 are summarized in Table 6. 
Figure 7 also provides a visual representation of these alterations.  The research in this area focuses on how 
land area has changed relative to the total land area. An increase in area is shown by a positive change value, 
whereas a reduction is indicated by a negative value. 

Table 6. Category Distributions for Lulcs Between 2020 And 2040 

 

                                 

 

 

 

 

Class category   2020 _ Area %  2040 _ Area %  2060 _ Area %  2080 _ Area %  2100 _ Area % 

Built-up area 4.14 12.69 18.46 20.79 27.13

Barren land 37.65 35.71 34.22 33.54 31.74

Waterbody 1.12 1.05 0.99 0.99 0.93

Dense vegetation 1.77 1.21 0.93 0.91 0.71

Sparse vegetation 1.60 0.99 0.73 0.71 0.53

Plantation 1.99 1.33 1.01 0.96 0.71

Agricultural land 25.28 22.35 20.44 19.69 17.66

Agricultural fallow 26.45 24.68 23.23 22.42 20.59

Area in % Area in % % Change

2020 2040 2020 − 2040

Built-up area 2481.95 7620.80 5138.85 4.14 12.69 8.55

Barren land 22595.42 21442.92 -1152.49 37.65 35.71 -1.94

Waterbody 672.11 631.65 -40.46 1.12 1.05 -0.07

Dense vegetation 1059.84 724.68 -335.15 1.77 1.21 -0.56

Sparse vegetation 962.50 595.44 -367.06 1.60 0.99 -0.61

Plantation 1196.75 797.75 -399.00 1.99 1.33 -0.67

Agricultural land 15172.04 13419.84 -1752.20 25.28 22.35 -2.93

Agricultural fallow 15877.07 14819.51 -1057.56 26.45 24.68 -1.78

class
2020 (km²) 2040 (km²) change (km²)

 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v3i7.4647


Journal of Ecohumanism 

 2024 
Volume: 3, No: 7, pp. 2417 – 2433 

ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 
https://ecohumanism.co.uk/joe/ecohumanism  

DOI: https://doi.org/10.62754/joe.v3i7.4647  

2430 

 

Table 7. Category Distributions for Lulcs Between 2020 And 2060 

 

Table 8. Category Distributions for Lulcs Between 2020 And 2080 

 

Table 9. Category Distributions for Lulcs Between 2020 And 2100 

 

The study indicates when the future results are compared with the data of the year 2020, the built-up area 
has the potential to increase by 5138.85 square kilometers by 2040. On the flip side, it can be expected a 
decrease of 1152.49 sq. km in barren land, 40.46 sq. km in water bodies, 335.15 sq. km in dense vegetation, 
367.06 sq. km in sparse vegetation, 399 sq. km in plantation, 1752.2 sq. km in agricultural fallow, and 
1057.56 sq. km in agricultural land. In addition, the study sheds light on a common pattern where the 
growth of one type of land cover is inversely related to the shrinkage of other types, and the opposite is 
also true. 

Moving on to the differences between 2020 and 2060, as shown in Table 7 and Figure 7, the study shows 
a significant increase in the extent of developed land. In particular, by 2060, the projected urbanized area 
will have grown from 2481.95 km² in 2020 to 11091.76 km². On the other hand, it is expected that the areas 
of water bodies, dense vegetation, sparse vegetation, plantation, agricultural land, and agricultural fallow 
will decrease widely, shifting from 22595.42 km² to 20564.48 km², 672.11 km² to 595.31 km², 1059.84 km² 
to 560.31 km², 962.5 km² to 438.26 km², 1196.75 km² to 606.68 km², 15172.04 km² to 12283.05 km², and 
15877.07 km² to 13959.72 km², accordingly 

Area in % Area in % % Change

2020 2060 2020 - 2060

Built-up area 2481.95 11091.76 8609.81 4.14 18.46 14.32

Barren land 22595.42 20564.48 -2030.94 37.65 34.22 -3.43

Waterbody 672.11 595.31 -76.80 1.12 0.99 -0.13

Dense vegetation 1059.84 560.63 -499.21 1.77 0.93 -0.83

Sparse vegetation 962.50 438.26 -524.24 1.60 0.73 -0.87

Plantation 1196.75 606.68 -590.07 1.99 1.01 -0.98

Agricultural land 15172.04 12283.05 -2888.99 25.28 20.44 -4.84

Agricultural fallow 15877.07 13959.27 -1917.80 26.45 23.23 -3.23

class 2020 (km²) 2060(km²) change (km²)

Area in % Area in % % Change

2020 2080 2020 - 2080

Built-up area 2481.95 12508.17 10026.22 4.14 20.79 16.66

Barren land 22595.42 20173.39 -2422.02 37.65 33.54 -4.11

Waterbody 672.11 595.23 -76.88 1.12 0.99 -0.13

Dense vegetation 1059.84 545.92 -513.92 1.77 0.91 -0.86

Sparse vegetation 962.50 425.67 -536.84 1.60 0.71 -0.90

Plantation 1196.75 576.17 -620.58 1.99 0.96 -1.04

Agricultural land 15172.04 11846.77 -3325.27 25.28 19.69 -5.59

Agricultural fallow 15877.07 13483.94 -2393.13 26.45 22.42 -4.04

class 2020 (km²) 2080(km²) change (km²)

Area in % Area in % % Change

2020 2100 2020 - 2100

Built-up area 2481.95 16347.77 13865.82 4.14 27.13 22.99

Barren land 22595.42 19129.19 -3466.23 37.65 31.74 -5.91

Waterbody 672.11 562.29 -109.82 1.12 0.93 -0.19

Dense vegetation 1059.84 425.73 -634.11 1.77 0.71 -1.06

Sparse vegetation 962.50 320.21 -642.30 1.60 0.53 -1.07

Plantation 1196.75 428.52 -768.23 1.99 0.71 -1.28

Agricultural land 15172.04 10644.16 -4527.88 25.28 17.66 -7.62

Agricultural fallow 15877.07 12408.32 -3468.75 26.45 20.59 -5.86

class 2020 (km²) 2100(km²) change (km²)
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For the period from 2020 to 2080, the changes in land cover groups are shown in Table 8 and Figure 7. 
The study indicates that urban development is expected to increase from 2,481.95 km² to 12,508.17 km². 
This growth reflects a significant expansion in urban areas, highlighting the ongoing trends in urbanization 
and their potential impacts on land use and the environment. 

The changes in land cover categories from 2020 to the year 2100 are illustrated in Table 9 and Figure 7. 
The analysis projects that the built-up area will rise by 13,865.82 km² compared to 2020. This significant 
increase highlights the ongoing urban expansion and its potential implications for land use and 
environmental dynamics in the region.  

Conclusions 

The low-folded zone is one of the major parts of the Republic of Iraq. It represents parts of eight important 
Iraqi governorates. These governorates are Diyala, Erbil  Kirkuk, Maysan, Ninawa,  and Wasit, In addition, 
it is acknowledged as an important biodiversity hotspot in Iraq. 

To have a better grasp on these historical, contemporary, and future spatial changes, this study utilized an 
integrated strategy that included remote sensing, GIS, and the earth's surface the modeler MOLUSCE. The 
study's overarching goal was to employ these technologies to foretell how the low folded zone's LULC 
classifications will change in 2040,2060, 2080, and 2100. 

To continuously monitor and assess the changes in LULC over geography and time, remote sensing and 
geographic information systems offer a valuable opportunity. By employing these methods, the research 
can provide light on the anticipated LULC changes in the low folded zone. The study draws attention to 
notable changes in LULC, especially in urbanization and the growth of built-up regions after the year 2000. 

In the years 2040, 2060, 2080, and 2100, the study projects that the low folded zone will undergo significant 
urbanization. Because they shed light on the biological effects and possible degradation of the low folded 
zone landscape, these results are important for stakeholders, biodiversity conservationists, and decision-
makers. However, other landscape fabrics, such as arable land and desert land, would suffer as a result of 
these developments. The results of  the validation K (overall)= 0.83499, K(location)= 0.8586, K(histo) = 
0.97245, % of correctness =93.044, and R²= 0.9997 demonstrated a high level of  concordance between 
the classed maps and the maps generated by the model. Future predictions demonstrate that built-up land 
will increase (from 2481.95 to 16347.77 km²), barren land, water bodies, Dense vegetation, Sparse 
vegetation, Plantation, and Agricultural fallow and Agricultural land will decrease (from 22595.4 to 19129.18 
km²), (from 672.1 to 562.29 km²), (from 1059.83 to 425.73 km²), (from 962.50 to 320.20 km²), (from 
1196.75 to 428.5 km²), (from 15172.0389 to 10644.1551 km²) and (from15877.071 to 12408.32 km²) 
respectively. 

The study provides reliable historical data for sustainable land exploitation that minimizes impacts on 
biodiversity and landscapes. The forecasted LULC maps in 2040, 2060, 2080, and 2100 are useful for this 
purpose. All planning, decision-making, sustainable management, and preservation of biodiversity 
endeavors will be guided by these maps. They help lawmakers strike a balance between development and 
environmental preservation by shedding light on future land use. 
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