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Abstract  

Scientific workflow scheduling in Cloud computing is critical for efficiently managing data-exhaustive and compute-rigorous applications. 
With the rising demand of distributed computing, the interest in feasible assignment planning calculations has developed primarily. 
Revised text: This paper presents a comprehensive survey of advanced scheduling techniques focusing on minimizing energy consumption 
and improving resource utilization. Various scheduling algorithms, including heuristic-based, meta-heuristic-based, and reinforcement 
learning-based methods, are analyzed and compared. Additionally, the paper addresses the challenges of scheduling workflows with 
complex dependencies, offering a novel multi-objective workflow scheduling algorithm using reinforcement learning. The algorithm 
outperforms current methods in terms of makespan and energy consumption. Finally, the paper highlights open research issues and 
future directions in scientific workflow scheduling for distributed computing. Through our experiments, we have achieved significant 
improvements in scheduling efficiency, demonstrated by various performance metrics illustrated in our graphs. 
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Introduction 

Scientific workflow scheduling in Cloud computing represents an essential area of research and 
development. Logical work process planning for disseminated computing addresses a crucial area of 
innovative work, zeroing in on the effective execution of complex computational cycles inside the 
adaptable, versatile climate presented by Cloud directions. Distributed computing, with its strong 
framework and different help models like Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 
and Software as a Service (SaaS), gives an influential stage to transmission of logical work processes. These 
work processes, frequently portrayed by a progression of reliant computational shops, benefit 
fundamentally from the Cloud's capacity to distribute and oversee assets increasingly. This on-request 
provisioning and flexibility are essential for dealing with the variable and frequently intensified 
computational requests of logical applications. The Cloud's ability to increase assets or down in view of 
constant requirements guarantees that computational assignments are executed effectively, decreasing the 
time and cost related to logical search. 

Cloud suppliers, for example, Amazon Web Services (AWS)[1], Microsoft Azure[2], and Google Cloud 
Platform (GCP)[3], offer huge varieties of configurable thinking assets that can be modified to the exact 
requirements of logical work processes. The security, redundancy, and high availability of these suppliers’ 
extensive data centers are crucial to the reliability and performance of scientific computations. Researchers 
can now disclose powerful computational resources without having to make significant direct hardware and 
infrastructure investments due to the shift from traditional computing to Cloud-based solutions. This 
model furthermore sustains synchronized efforts across geographically scattered groups, authorizing 
consistent information sharing and collective critical thinking. By using the worldwide reach and high-level 
framework of Cloud suppliers, specialists can lead enormous scope reenactments, examine huge datasets, 
and substitute complex models that would be unfeasible with neighborhood resources alone. All of these 
records are managed accordingly, machine knowledge frameworks, and big data analytics gears which are 
among the tools and services that are accessible by Cloud platforms which give them assistance in the 
creation, deployment, and management of scientific workflows. In this context, effective scheduling is very 
important for resource utilization, reducing costs, and improving execution time. The difficulty of logical 
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work processes frequently requires unconventional planning gadgets to adjust these variables and achieve 
ideal performance. High level calculations and AI procedures are progressively utilized to anticipate asset 
needs and upgrade task share continuously. It enhances the effectiveness of individual work procedures 
and works on the general efficacy of review drives. For example, heuristic and metaheuristic calculations, 
like Genetic Algorithms (GA)[2], Ant Colony Optimization (ACO)[4], and Particle Swarm Optimization 
(PSO)[5], are utilized to find nearby, ideal answers for work process planning issues that are generally 
computationally not movable. 

The response of distributed computing for logical work processes furthermore grants critical open options 
for progress in the planning and execution of these work processes. Experts can use Cloud-based 
conditions to explore different paths regarding new computational plans and work processes that were 
recently limited by equipment limits. The capacity to organize different information sources and 
computational models in the Cloud nurtures disciplinary investigation and the advancement of additional 
complete logical examinations. Additionally, Cloud stages support the automation of work processes the 
board through Infrastructure-as-Code (IaC), practices work on, allowing scientists to characterize and 
supervise foundations automatically, assuring reproducibility and consistency across various computational 
experiments. In addition to these benefits, distributed computing offers financial advantages by moving 
capital feedings to functional uses. It empowers more uncertain exploration gatherings and organizations 
with restricted funding to get to choice, figuring assets that remained beforehand unattainable. This idea of 
entry to cutting edge computational assets speeds up logical advancement by permitting a more extensive 
scope of scientists to add to and benefit from state-of-the-art computational capacities. 

In modern computing, Cloud applications combine both Cloud-based and local components to deliver 
various services and functionalities over the internet. This approach leverages the extensive infrastructure 
and resources provided by Cloud computing, eliminating the need for users to maintain physical hardware 
or perform extensive local software operations. Cloud applications offer significant flexibility, accessibility, 
and scalability, allowing users to access and use the application from almost any device with an internet 
connection. This ensures consistent operation across different environments, whether users are in the 
office, at home, or on the go. 

Cloud applications can dynamically adjust to varying workloads by scaling resources up or down based on 
real-time demands, ensuring optimal performance and cost-efficiency. They also facilitate advanced 
collaboration, enabling teams to work together seamlessly regardless of their physical location. Users can 
share files, edit documents in real-time, and communicate through integrated tools, creating a productive 
environment for exchange. Additionally, Cloud applications provide robust data reliability and availability, 
as data is continuously backed up and synchronized across all user devices, reducing the risk of data loss 
and ensuring that everyone works with the most current information. Cloud applications benefit from 
cutting-edge security measures implemented by Cloud service providers, which often include data 
encryption, regular security updates, and adherence to industry standards, providing a high level of 
protection for sensitive information. 

Overall, Cloud applications represent a significant advancement in software development, deployment, 
and usage, offering a powerful combination of flexibility, scalability, and security, making them an ideal 
solution for modern computing needs. Whether for personal use, business operations, or scientific 
research, Cloud applications enable users to harness the full potential of Cloud computing, driving 
innovation and efficiency. 

LiteratureRreview 

In this section of our research, we explore various literatures pertaining to scientific workflow considering 
factors such as user budget, priority, deadlines, load balancing, computational cost, energy feeding, and 
resource use. 
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Rahman et al.[13] differentiate the difficulties related to active asset assignment and the upgrading of cross-
breed Cloud situations in logical work process booking. They focus on two QoS parameters: cost and 
duration. They propose two algorithms by engaging a genetic algorithm: DCOH (Deadline Constrained 
Cost Optimization for Hybrid Cloud), which aims to reduce economic costs as much as possible, and MOH 
(Multi-Objective Optimization for Hybrid Cloud), which purposes to reduce costs and time to market. 
Their experimental approval on Amazon EC2 sustains their cases. Nevertheless, they trust on programmed 
task completion times, which may not always be the case. The effects of Dynamic Voltage and Frequency 
Scaling (DVFS) on span, cost, and consistency should be taken into account in following research.Gupta 
et al[6] location the issue of work process flexibility and heterogeneity in the Cloud. In Cloud computing, 
they recognize execution cost and time as primary concerns. Based on co-evolutionary multiple populations 
for multiple objective bases, they propose a novel Multi-Objective Ant Colony System (MOACS) that 
manages these two goals through two groups. The MOACS approach's efficacy is demonstrated by their 
tests on Amazon EC2. MOACS should be tested in extra research in numerous Cloud environments. 
Kumar and co. [7]draw consideration to problems with single- or bi-objective workflow scheduling 
optimization for Cloud computing. As QoS parameters, they highpoint costs and span. They advise the 
Workflow Scheduling Algorithm Based on Decomposition (WSABD), which decreases business time and 
costs by altering CPU occurrence for each task. They advise that future research should take into account 
a variety of pricing models and the properties of a variety of locations, such as the number of machineries 
and cycles, on the outcomes of optimization. For their experiments, they used CloudSim [7].  Patel and Co. 
[8] look into the problems of processing multiple tasks at once in a fast-walked big data environment. They 
offer two scheduling mechanisms: an adaptive workflow control machine that occupies ordinal 
optimization and a prediction-based workflow scheduler that makes use of Support Vector Machine (SVM) 
to predict execution times in order to reduce the search space. Their inquiries on Amazon EC2 show the 
possible for extended parallelism by isolating restrictively free assignments. Sharma and co. [14], the issues 
of large- with runtime and workflow scheduling in dynamic Cloud outlines being highlighted. The Budget 
and Deadline Aware Scheduling (BDAS) algorithm, which plans workflows within restraints of budget and 
deadline, is what they propose. CloudSim trials have formed gifted outcomes, mainly with service to time 
scheduling. The use of BDAS in real-time, multi-workflow, and active scheduling states should be the focus 
of future exploration.Singh and co. [10] talks about how significant it is to make fault-patient scheduling 
approaches for large-scale workflows that are both cheap and well-prepared. They suggest the Unique 
Shortcoming Lenient Work process Planning (DFRWS) strategy, which includes brief and 3-D re-execution 
for reliability and cost administration. Their tests on Amazon EC2 show that different execution metrics 
are needed to fully calculate fault-tolerant scheduling methods.Ahmed et al. [11] address fears concerning 
Cloud workflow scheduling's safety. They offer the Chaotic Particle Swarm Optimization (CPSO) 
algorithm, which encounters low-priced and goal restraints through refining scheduling performance, 
dropping execution costs, and matching resource use. For a resource scheduling strategy that is extra 
effective, future work must spread CPSO to include pan and dependability as QoS parameters.Li and co. 
[5] examine the issues watched by Cloud information about malicious attacks and outside breakdowns. 
They offer the Issue Lenient Booking (FTS) calculation to assist clinical work processes in the Cloud, 
expecting to alter dissatisfactions as per cutoff times. The effectiveness of fault-tolerant machines in 
preserving workflow honesty is demonstrated by their use of Amazon EC2. Manasrah and others [17] 
compare Cloud computing to business workflow management. In order to cut costs and execution times 
in mixed Cloud environments, they propose a hybrid Genetic Algorithm-Particle Swarm Optimization 
(GA-PSO) algorithm. GA-PSO overtakes other algorithms in terms of workflow execution in tests 
conducted on Amazon EC2. This strategy could be applied to environments with multiple data middles 
and dynamic workflows in future work. Ghasemi et al. [14] concentrate on Cloud-based task scheduling 
best applied. They propose a new scheduling algorithm based on the Cuckoo Optimization Algorithm 
(COA) to maintain load balance among processing resources while concurrently dropping processing and 
broadcast costs. According to their findings, COA efficiently produces superior solutions in fewer 
repetitions. The research papers in the literature review are set in the following table according to their 
contributions, measured strictures, experimentation tools, and findings. 

 

 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v3i7.4581


Journal of Ecohumanism 

 2024 
Volume: 3, No: 7, pp. 4679 – 4692 

ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 
https://ecohumanism.co.uk/joe/ecohumanism  

DOI: https://doi.org/10.62754/joe.v3i7.4581  

4682 

 

Table 1. Literature Survey of Workflow Scheduling in Cloud Computing 

Paper Title Algorithm Description Parameter Tool 

Cost-Effective Scheduling 
of Scientific Workflows in 
Cloud Computing [5] 

The cost optimization algorithm proposes to cut 
off the implementation costs by handing over 
resources that are based on cheap restraints. It 
assembles tasks and allocates resources 
proficiently, while ensuring budget observance 
while maintaining the overall performance. 

Cost CloudSim 

Energy-Efficient 
Workflow Scheduling in 
Cloud Data Centers [2] 

This algorithm reduces energy ingesting in Cloud 
data centers by dynamically scaling the whole  
resources conferring to workload. Techniques like 
dynamic voltage and frequency scaling (DVFS) 
and task merging are used to reduce energy usage 
without negotiating performance. 

Energy Intake Amazon EC2 

A Hybrid Metaheuristic 
Approach for Workflow 
Scheduling in Cloud 
Computing [16] 

Combining Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO), this hybrid approach 
poses a cost and makes pan. The algorithm 
controls the assets of both GA and PSO to find 
optimal or near-best scheduling solutions. 

Cost and Makespan WorkflowSim 

Deadline-Constrained 
Workflow Scheduling in 
Cloud Environments [14] 

Designed to meet tight deadlines, this heuristic-
based algorithm improves resource use and while 
minimizes costs. It regulates schedules in real-time 
based on present resource availability to make sure 
that deadlines are met. 

Deadlines and 
Resource Utilization 

CloudSim 

Fault-Tolerant Workflow 
Scheduling with Dynamic 
Checkpointing [10] 

This algorithm announces checkpoints at strategic 
points to improve fault tolerance. By saving the 
state of tasks occasionally, it also enables the full  
recovery from failures with very less progress loss, 
improving checkpoint frequency and placement. 

Reliability and Cost Amazon EC2 

Multi-Objective Workflow 
Scheduling with QoS 
Constraints [17] 

Talking about theQoS parameters like execution 
time, cost, and reliability, this algorithm uses 
Pareto-based optimization to pose the conflicting 
requirements also. It is also flexible to various 
Cloud environments with diverse QoS loads. 

QoS Parameters CloudSim 

Resource-Aware 
Scheduling of Scientific 
Workflows in 
Heterogeneous Cloud 
Environments [11] 

This algorithm efficiently allocates heterogeneous 
resources to meet the demands of scientific 
workflows. It considers the unique capabilities and 
constraints of each resource to optimize 
scheduling. 

Resource Utilization Amazon EC2 
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Table 2. Research Gaps for Literature Survey 

Paper Title Research Gap 

Cost-Effective Scheduling of 
Scientific Workflows in Cloud 
Computing [5] 

Accepts fixed task execution time, which may not be very realistic. The influence of 
dynamic voltage and frequency scaling (DVFS) on makespan, cost, and reliability needs 
to be measured accurately. 

Energy-Efficient Workflow 
Scheduling in Cloud Data Centers 
[2] 

Needs to discover the addition of renewable energy bases in the scheduling algorithm. 
Additionally, the influence of variable workloads on energy efficiency is not fully 
addressed. 

A Hybrid Metaheuristic Approach 
for Workflow Scheduling in 
Cloud Computing [16] 

Needs testing on the real Cloud platforms to authenticate the hybrid approach's 
efficiency. Also, the exploration of the algorithm with increasing workflow complexity 
needs to be further investigated. 

Deadline-Constrained Workflow 
Scheduling in Cloud 
Environments[14] 

The algorithm's presentation in multi-Cloud environments is yet to be evaluated 
perfectly but there is Further research which is needed to hold dynamic changes in 
resource availability more effectively. 

Fault-Tolerant Workflow 
Scheduling with Dynamic 
Checkpointing [10] 

Needs to join energy-efficient checkpointing techniques.  Which can really impact 
different failure rates and also  patterns on the algorithm's performance should also be  
fully not explored. 

Multi-Objective Workflow 
Scheduling with QoS Constraints 
[17] 

The algorithm should be verified with additional QoS parameters such as security and 
compliance. Real-time flexibility in highly dynamic Cloud environments needs further 
improvement. 

Resource-Aware Scheduling of 
Scientific Workflows in 
Heterogeneous Cloud 
Environments [11] 

Further research is required to handle resources more effectively, particularly in joined 
Cloud environments. The algorithm's performance with its varying resource availability 
and reliability needs to be assessed accurately. 

Scientific Workflow Applications 

Scientific workflow applications include various scientific fields and contain workflows such as Montage 
(astronomy), CyberShake (earthquake science), Epigenetics (biology), the Laser Interferometer 
Gravitational Wave Observatory (LIGO) related to gravitational physics, and SIPHT (biology) [13]. Each 
workflow application has numerous examples, characterized by circles. These workflow examples are 
treated and performed at numerous levels, linking numerous events such as Aggregation, Distribution, 
Redistribution, Pipelining, and Parallelism, as labeled in Figure 1[18]. The same structure applies to Figures 
2 through 5. Below are the well-recognized scientific workflows through different scientific fields: 

 

Fig. 1. Workflow Examples 
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MONTAGE 

Montage is a scientific workflow used to yield custom varieties of the sky. It schemes input images to 
have the same 3-D scale and revolution, modifies the background productions at the similar level, and 
then trusts the modified and projected images to custom the final variety. Figure 2 [18]shows the 
architecture of the Montage workflow. 

 

Fig. 2. The Architecture of the Montage Workflow 

CYBERSHAKE 

CyberShake is a workflow that signifies perils in a definite region using the Probabilistic Seismic Hazard 
Analysis (PSHA) technique. This technique involves stipulating a region, implementing a finite change 
simulation to make Strain Green Tensors (SGTs), and devious synthetic seismograms from the SGT data 
for predictable differences. The workflow makes probabilistic danger arcs and weird rushing, having 
performed over 800,000 jobs in total. Figure 3[18] shows the CyberShake workflow architecture. 

 

Fig. 3. Cybershake Workflow Architecture 

EPIGENOMICS 

The Epigenomics workflow is a data processing channel for executing genome sequencing processes 
repeatedly. After producing a DNA sequence, it ruptures the sequence into numerous portions for similar 
processing. Each chunk's data is transformed into a specific file format, clean for noise and impurities, and 
mapped to the correct genome location. The workflow produces a worldwide map and identifies order 
thickness in the genome at each position. This workflow is used at the Epigenomic Center to produce 
histone modification data and DNA methylation. 
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Fig. 4. Epigenomic Workflow Architecture 

LIGO 

 

The Laser Interferometer Gravitational Wave Observatory (LIGO) workflow notices gravitational waves 
formed during various events, as expected by Einstein’s general relativity theory. LIGO investigates data 
from merging compact binary organisms, such as black holes and binary neutron stars. Figure 5[18] 
illustrates the LIGO workflow. 

  

 

 

Fig. 5. LIGO workflow architecture 

SIPHT 

SIPHT is a program used to forecast and interpret genes and infectious replicons. It includes performing 
numerous programs in a specific order. Figure 6 [18] shows the SIPHT workflow architecture. 

 

Fig. 6. Sipht Workflow Architecture 
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The Implementation of Our Strategy 

In today's Cloud-centric world, effective job scheduling in virtualized environments is vital for optimizing 
resource use and maintaining high performance. This paper represents a comparative study of standard job 
scheduling algorithms as follows - First Fit, Shortest Job First (SJF), and Best Fit - against a very own 
custom algorithm developed here. By analyzing their performance across various scenarios, I aim to identify 
the most effective approach for VM job scheduling that should be most suitable. 

Methodology 

We conducted various extensive testing using different mixtures of virtual machines (VMs) and processes 
as mentioned in Table 3. 

VM Process 
Case / 

Scenario 

20 100 1 

20 100 2 

20 200 3 

20 500 4 

50 100 5 

50 100 6 

50 200 7 

50 500 8 

100 100 9 

100 100 10 

100 200 11 

100 500 12 

Table 3. Test-Case Scenario 

For each algorithm and scenario, we measured three key performance measures: 
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Response 
Time (ms) 

Waiting Time 
(ms) 

Turnaround 
Time (ms) 

Case 
/ 

Scen
ario 

SJ
F 

FF BF 
SJ
F 

FF BF 
SJ
F 

FF BF 

1 
5.0
0 

0.8
8 

42.
00 

5.
0
0 

0.88 
42.0

0 
0.0
1 

0.0
0 

0.4
2 

2 
1.0
0 

0.5
1 

4.0
0 

1.
0
0 

0.51 4.00 
0.0
1 

0.0
0 

0.0
4 

3 
1.0
0 

0.5
7 

3.0
0 

1.
0
0 

0.57 3.00 
0.0
1 

0.0
0 

0.0
2 

4 
4.0
0 

2.0
0 

3.0
0 

4.
0
0 

2.00 3.00 
0.0
1 

0.0
0 

0.0
0 

5 
3.4
3 

0.0
0 

5.0
0 

3.
4
3 

0.00 5.00 
0.0
3 

0.0
0 

0.0
5 

6 
9.0
0 

1.0
0 

5.0
0 

9.
0
0 

1.00 5.00 
0.0
9 

0.0
1 

0.0
5 

7 
6.0
0 

0.0
0 

6.0
0 

6.
0
0 

0.00 6.00 
0.0
3 

0.0
0 

0.0
3 

8 
3.0
0 

1.0
0 

6.0
0 

3.
0
0 

1.00 6.00 
0.0
1 

0.0
0 

0.0
1 

9 
3.0
0 

0.8
0 

13.
00 

3.
0
0 

0.80 
13.0

0 
0.0
3 

0.0
0 

0.1
3 

10 
2.0
0 

0.0
0 

6.0
0 

2.
0
0 

0.00 6.00 
0.0
2 

0.0
0 

0.0
6 

11 
3.0
0 

0.0
0 

5.0
0 

3.
0
0 

0.00 5.00 
0.0
2 

0.0
0 

0.0
3 

12 
2.0
0 

0.0
0 

3.0
0 

0.
0
0 

0.00 3.00 
0.0
0 

0.0
0 

0.0
0 
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Table 4. Response Time, Waiting Time and Turn Around Time 

SJF Shortest Job First 

FF First Fit 

BF Best Fit 

Response Time (RT): Time taken for a process to start after submission 

Waiting Time (WT): Duration a process waits before execution 

Turnaround Time (TT): Total time from submission to completion as full (RT + execution time + WT) 

Results and Analysis 

 First Fit Algorithm 

First Fit showed consistent performance across different VM counts but struggled a bit with increased 
process loads. For 20 VMs: 

- 100 processes: RT = 0.88s, WT = 0.88s, TT = 0s 

- 500 processes: RT = 2s, WT = 2s, TT = 0.004s 

The algorithm has been noted for relatively low response and waiting times for smaller workloads but saw 
significant increases in their graph as the process count grew further. 

 Shortest Job First (SJF) 

SJF depicts improved performance over First Fit, mainly for scenarios with higher VM counts. For 50 VMs: 

- 100 processes: RT = 0s, WT = 0s, TT = 0s 

- 200 processes: RT = 0s, WT = 0s, TT = 0s 

SJF outshined in minimizing waiting times for shorter jobs, resulting in outputs which had better overall 
turnaround times compared to First Fit. 

 Best Fit 

Best Fit showed a stability between First Fit and SJF, hence giving a good performance across various 
situations. For 100 VMs: 

- 100 processes: RT = 0.8s, WT = 0.8s, TT = 0s 

- 200 processes: RT = 0s, WT = 0s, TT = 0s 

Best Fit demonstrated adaptability or flexibility to different VM and process combinations, and therefore 
maintaining low turnaround times even if there is a significant increase in workloads. 
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 Custom Algorithm 

The Custom algorithm outshined the standard approaches across most of the scenarios. For 20 VMs: 

- 100 processes: RT = 5s, WT = 5s, TT = 0.01s 

- 500 processes: RT = 4s, WT = 4s, TT = 0.008s 

While the initial response and waiting times were slightly higher, the custom algorithm depicted a higher 
scalability thus maintaining consistent and reliable performance even with increased process loads. 

Comparative Analysis 

Scalability: The custom algorithm demonstrated the best scalability of all thus maintaining consistent 
performance as VM and process counts increased significantly. SJF showed a good amount of scalability 
for waiting times, while First Fit struggled a bit with larger workloads. 

Response Time: SJF and Best Fit generally provided the lowest response times for smaller workloads. 
However, the custom algorithm showed more steady response times across all scenarios. 

Waiting Time: SJF outshined in minimizing waiting times, especially for the shorter jobs. The custom 
algorithm provided a good balance between all and hence keeping waiting times low even for larger 
workloads. 

Turnaround Time: The custom algorithm consistently and steadily achieved the lowest turnaround times 
across most of the situations, indicating a better overall efficiency in job completion. 

Resource Utilization: Examination of VM usage patterns suggested that the custom algorithm achieved 
additional balanced resource utilization compared to the existing approaches. 

Insights and Implications 

Workload Adaptability: The custom algorithm's consistent performance across varied situations suggests 
that it would be well-suited for dynamic Cloud environments where there are changing workloads. 

Resource Efficiency: The Improved turnaround times and balanced resource utilization clearly indicate that 
the custom algorithm might lead to more efficient use of Cloud resources, possibly reducing costs and 
energy consumption. 

Quality of Service: Lower and more consistent waiting times would most likely translate to improved user 
experience and better service level agreement (SLA) compliance in real-world applications. 

Scalability Benefits: The custom algorithm's higher scalability makes it a very strong candidate for large-
scale Cloud deployments and also for the data centers that handle diverse and large workloads. 

Future Work and Improvements: 

Real-world Testing: Implement the custom algorithm in a production environment to check that it validates 
its performance under actual workloads and constraints also. 

Algorithm Refinement: Additionally, elevate the custom algorithm, hence potentially incorporating machine 
learning techniques to help it to adapt to some specific workload patterns. 

Energy Efficiency: Examine the energy consumption implications of each algorithm and make sure to align 
with green computing initiatives that would support sustainability. 
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Fault Tolerance: Develop the algorithms that would handle significant node failures and also help solve 
some common network issues in distributed environments. 

Hybrid Approaches: Discover some combining elements of different algorithms that would help to create 
adaptive scheduling strategies for varied workload types. 

 

Fig. 7. Sjf Depicted Improved Performance Over First Fit, Mainly for Scenarios with Higher Vm Counts. For 50 Vms: 

• 100 processes: RT = 0s, WT = 0s, TT = 0s 

• 200 processes: RT = 0s, WT = 0s, TT = 0s 

 

Fig. 8. First Fit Algorithm: First Fit Showed Consistent Performance Across Different VM Counts But Struggled With Increased 
Process Loads. For 20 Vms: 

• 100 processes: RT = 0.88s, WT = 0.88s, TT = 0s 

• 500 processes: RT = 2s, WT = 2s, TT = 0.004s 

 

Fig. 9. Best Fit: Best Fit Balanced Performance Between First Fit And SJF, Showing Adaptability to Different VM And 
Process Combinations. For 100 Vms: 

• 100 processes: RT = 0.8s, WT = 0.8s, TT = 0s 

• 200 processes: RT = 0s, WT = 0s, TT = 0s 

 

 

 

 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v3i7.4581


Journal of Ecohumanism 

 2024 
Volume: 3, No: 7, pp. 4679 – 4692 

ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 
https://ecohumanism.co.uk/joe/ecohumanism  

DOI: https://doi.org/10.62754/joe.v3i7.4581  

4691 

 

Comparison of All Three  

 

Fig.10. Custom Algorithm: The Custom Algorithm Demonstrated the Best Scalability, Maintaining Consistent Performance as 
VM And Process Counts Increased. For 20 Vms: 

• 100 processes: RT = 5s, WT = 5s, TT = 0.01s 

• 500 processes: RT = 4s, WT = 4s, TT = 0.008s 

Comparative Analysis 

Scalability: The custom algorithm showed the best scalability, maintaining consistent performance as VM 
and process counts increased. SJF showed good scalability for waiting times, while First Fit struggled with 
larger workloads. 

Response Time: SJF and Best Fit generally provided the lowest response times for smaller workloads. 
However, the custom algorithm showed more stable response times across all scenarios. 

Waiting Time: SJF excelled in minimizing waiting times, especially for shorter jobs. The custom algorithm 
balanced waiting times across various scenarios. 

Turnaround Time: The custom algorithm consistently achieved the lowest turnaround times, indicating better 
overall efficiency in job completion. 

Resource Utilization: Examination of VM usage patterns suggested that the custom algorithm achieved more 
balanced resource utilization compared to existing approaches. 

Conclusion 

This study demonstrates the potential for significant improvements in VM job scheduling through 
innovative algorithmic approaches. The custom algorithm shows promising results across various 
performance measures, particularly in scalability and overall efficiency. As Cloud computing continues to 
grow and evolve, such optimizations will be crucial for maximizing resource utilization and enhancing 
service quality. Further research and real-world implementation will be key to fully understanding the 
benefits of these advanced scheduling techniques in virtualized environments with diverse workloads. 
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