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Abstract

Explained in this paper is how data mining provides a way to work on distributed Machine 1earning (ML) systems, which are already
often used in data mining operations. This paper examines eight strategies applied in cases of Taiwanese customer defaunlt. The eight
methods. Eight distinct classifications are evaluated for prediction accuracy: Random Forest, Naive Bayesian Classifier, K-Nearest
Neighbour, Support V'ector Machine, Neural Net, Decision Tree, Logistic Regression, and Deep Learning. Utilizing this method
raises the possibility of many consumer loans and is one way to evaluate risk management outcomes, such as the exact probability of
credit card loan defanlt. Large financial losses for the borrower conld result from default due to the method's overall effectiveness and
efficiency. 30,000 Taiwanese clients with twenty-five qualities, all of whom have full payment histories, are the subject of this study's
payment data analysis. Four approaches (weighting, SMOTE, Imbalance, and Downsampling) were used to balance the data in this
study. We shall contrast four approaches and outline eight distinct approaches in this study.

Keywords: Defanit of Credit Card Payment, Machine 1earming, Debt, Balance Data, Credit History Data, Taiwan Banks.

Introduction

Credit card payment is a commonly utilized method for settling shopping expenses. An advantage of having
a card as a client is that it guarantees payment for the expenses incurred by the client while purchasing
services and items [1]. Numerous banks provide credit card payment services to their consumers, typically
offering exclusive promotions and discounts for credit card transactions [2]. [3] The bank will get benefits
and increase its customer base by providing promotional discounts to credit card holders. Providing
incentives to credit card holders can capture the interest of young individuals in Taiwan who are the
intended customers [4]. Historical data indicates that the low income of young credit card holders led to a
rise in unpaid payments, increasing credit card debt. This can lead to issues in Taiwan, such as the rising
prevalence of suicides and other illicit activities undertaken to settle credit card debts. The problem resulting
from several clients encountering payment failure can lead to a decrease in consumer confidence. Recent
data indicates that credit card issuing banks are expetiencing a ctisis as the accumulation of loans continues
to rise [5]. Hence, our study, based on extensive research and analysis of multiple prior studies on payment
failure prediction, will serve as a valuable resource for forecasting credit card payment defaults in the future.
[6] The researcher's study examines instances of payment failures among credit card users in Taiwan. The
study also evaluates the accuracy of probability predictions using six data mining techniques: K-Nearest
Neighbor classifiers (IKNN), Logistic Regression (LR), Discriminant Analysis (DA), Naive Bayes classifier
(NB), Artificial Neural Networks (ANNs), and Classification Trees (CTs). This research examines six
mining engineering approaches and highlights subtle variations among the six artificial neural network
methods. The findings demonstrate that the artificial neural network achieves more precise classification
compared to the other five methods. The artificial neural network demonstrated superior performance in
accurately forecasting the chance of default, as evidenced by its high R2 value of 0.9647 (near to 1), low
regression intercept of 0.0145 (almost to 0), and strong regression coefficient of 0.9971 (close to 1). The
predictive default probability supplied by an Artificial Neural Network (ANN) is the sole representation of
probability that may be utilized. From a risk control standpoint, determining the likelihood of default is
more significant than categorizing clients into binary outcomes of hazardous and non-risky. Hence, it is
advisable to employ artificial neural networks instead of alternative data mining techniques, like logistic
regression, to tackle these client scores. [7] The paper utilizes seven methods, specifically: K-Nearest
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Neighbor classifiers (KNN), Logistic Regression (LR), Naive Bayes classifier (NB), Random Forest (RF),
Support Vector Clustering (SVC), and Linear Support Vector Clustering (SVC). The analysis examines
payment failure data from 30,000 clients in Taiwan, including twenty-three features. The findings indicate
that only a small number of the factors employed are sufficient for analyzing the characteristics of default
in lending decisions.

The results offer valuable feedback to credit assessors, lending institutions, and business analysts for a
comprehensive study. In addition, they emphasize the significance of employing cautious lending methods
to gain a deeper understanding of the behavior of credit card borrowers, along with certain accounting,
historical, and demographic attributes. The majority of customers in developed countries consistently
maintain personal credit through the use of credit cards. This study aims to identify the essential traits that
enable cardholders to make reasonable decisions to optimize their satisfaction. Nevertheless, certain credit
card clients continue to demonstrate a tendency to misuse their credit cards and occasionally fall victim to
manipulation by credit institutions. The primary significance of this work is in the incorporation of crucial
client elements, such as financial data, outstanding payments, and other operational attributes, which
highlight the need to assess their reliability. A variety of machine learning algorithms were utilized to analyze
the credit portfolio from April to September 2005. This portfolio consisted of consumer credit card data,
and the purpose was to evaluate the creditworthiness of these clients. The precision of the generated model
varies between 70% and 82.6%. Thus, its precision might be deemed satisfactory and consequently
employed by financial institutions or credit card businesses to classify prospective clients according to their
financial stability throughout the approval procedure, while utilizing less data instead of dealing with
numerous customers. Financial, population-related, and credit-related data.

Specifically, there were 30,000 instances of credit card cases, with 23,364 cases showing no signs of default
(meaning they were paid on time or with a minor delay), and a total of 6,636 cases were classified as default
conditions based on customer circumstances in September 2005. [8] In his comparative study of other
algorithms, specifically Random Forest (RF), AdaBoost, and the bagging algorithm, the bagging algorithm
yvielded a result of 0.72. [9] The research focuses on loan data collected between 2012 and 2014 from the
Korea Student Aid Foundation. The objective of this study is to create a prediction model for clients who
are unable to make credit card payments. The research employs both a logistic regression model and the
Cox proportional hazard model to develop a risk prediction model. [10] This study explores the utilization
of three methodologies, specifically decision trees, neural networks, and logistic regression, to address and
resolve payment issues. Additionally, it investigates the effectiveness of combining these techniques with
ensemble models.

Literature Review

Since 1997, there has been a significant amount of study conducted on the topic of credit card payment
failures. Credit cards play a crucial role in supporting banking operations, particulatly by offering discounts
and the convenience of deferred payment. Based on prior research findings, numerous machine-learning
techniques are employed to identify instances of payment failures. In 1997, a researcher [11] was
undertaking research on credit cards in the United Kingdom (UK) using formal statistical methods to
classify class divisions into 'good' or 'poor' categories. This tool can evaluate the credit expansion of
consumers who default on their payments. [12] In his study, the researcher employed conventional
statistical techniques, specifically logistic regression and discriminant analysis, to assess the creditworthiness
of clients. Additionally, machine learning methods such as neural networks, decision trees, and support
vector machines were successfully employed to classify clients as either eligible borrowers or potential loan
defaulters. Among the three methods employed to assess decision trees and evaluate their capabilities, they
are readily comprehensible. This study employs eight methodologies that have been previously established.
However, this research distinguishes itself by utilizing a combination of these methods, namely Decision
Tree (DT), Naive Bayes Classifier (NB), Logistic Regression (LR), K-Nearest Neighbor Classifier (IKNN),
Random Forest (RF), Support Vector Machine (SVM), Neural Net (NN), and Deep Learning (D.L.). There
are four approaches for balancing data: downsampling, imbalance, Synthetic Minority Oversampling
Technique (SMOTE), and weighting.
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Downsampling

Downsampling is a signal processing technique that includes reducing the sample rate of a signal. This can
be achieved for several goals, like as reducing the amount of data to be processed or transmitted, or
decreasing the resolution of a signal. Downsampling in digital signal processing is the process of selecting
and removing samples from a signal by keeping only every Nth sample and discarding the rest. For example,
if you have a signal that has been sampled at a frequency of 1000 Hz and you reduce the sampling rate by
a factor of 2, you would keep every other sample, thereby effectively reducing the sampling rate to 500 Hz
[13].

Aliasing is a phenomenon that can happen during downsampling, in which the high-frequency components
of a signal are mistakenly portrayed as lower frequencies. In order to avoid aliasing, it is common practice
to first apply a low-pass filter to the signal before downsampling. This filter removes high-frequency
components that could cause aliasing when the signal is downsampled [14].

Downsampling is a frequently used approach in image processing to decrease the resolution of an image,
hence reducing its size and potentially saving storage space or improving processing speed. Downsampling
is a useful technique for reducing the size or resolution of signals or images while maintaining crucial data,
as long as potential aliasing effects are considered [15].

Imbalances

An "imbalance" refers to the lack of equilibrium or proportionality in a system ot situation [16]. It suggests
that the components inside the system are spread unevenly or not in the correct proportions [17]. This term
is relevant in various circumstances, encompassing [18]:

Physical balance, in the context of the physical world, pertains to the condition of stability or equilibrium
where an object or system is inclined or leaning excessively in one direction.

In the realm of chemistry, the phrase "chemical balance" denotes a scenatio characterized by an
asymmetrical dispersion of substances or an inequitable ratio of reactants and products inside a chemical
reaction.

Emotional Balance: In the realm of psychology, an imbalance can be defined as an inequitable allocation of
emotions or an undesirable predominance of negative emotions to positive ones.

Economic equilibrium refers to a state in economics when there is a balance in the distribution of wealth,
absence of trade deficits, and equal growth throughout various areas or industries.

Social balance, within the realm of sociology, refers to inequalities in power, privilege, or access to resources
within a specific society.

Work-Life Balance: Imbalance in the context of personal growth may suggest an inequitable distribution of
time and energy between work, personal life, and other endeavors.

Identifying and addressing inequalities is often crucial for maintaining stability, coherence, and efficiency in
different systems, such as physical, chemical, social, or human systems.

Synthetic Minority Oversampling Technigne (SMOTE)

SMOTE stands for Synthetic Minority Over-sampling Technique. Oversampling is a technique used in
machine learning to address the problem of class imbalance. In many real-world datasets, especially in binary
classification problems, there is frequently a significant imbalance between the representation of the
minority class (with fewer occurrences) and the majority class (with more instances) [19]. Class imbalance
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can lead to the creation of biased models that have inferior performance in predicting the minority class

20].

SMOTE functions by generating synthetic instances of the minority class to balance the class distribution.
This is accomplished by creating new instances of the minority class that closely match the existing ones.
Consequently, the dataset is enlarged, providing a greater amount of precise training data for the minority
class. This improves the effectiveness of machine learning models, particularly in scenarios with imbalanced
class distributions [21].

Weighting

Weighting refers to the process of assigning different levels of importance or influence to individual objects
inside a system or dataset. This approach is widely used in the domains of statistics, data analysis, and
machine learning [22].

Weighting, in the context of statistical analysis, refers to the act of allocating higher priority to certain data
points or observations based on their level of significance or reliability. In the domain of survey research,
weighting is commonly used to adjust the results to improve the representativeness of the target population.
This is accomplished by giving higher priority to underrepresented groups [23].

Weighting is a machine-learning technique that enables the prioritization of some samples or features over
others during the training process. This can result in improved performance of the model on particular
tasks or subsets of data [24]. Weighting allows for a more sophisticated and precise analysis or modeling by
acknowledging and including the relative importance of multiple factors [25].

Methodology

Algorithms
- Algorithms DT, NE,
- Relevance of
Features

Figure 1. Purpose Methodology
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Data

The dataset consists of 30,000 data points, with 24 variables as indicated in table 1. Data quality selection
is employed to identify and address issues such as unclean, noisy, or erroneous transaction data. The
purpose of this process is to determine the presence of fraud and assess the informativeness of the data in
detecting fraudulent activities. The period. The data gathering methodology employs preprocessing
techniques to cleanse data and mitigate noise, as well as employ data augmentation or synthetic data
synthesis techniques.

Model

The choice of a model that is either excessively intricate or overly simplistic, and the failure to select a
model that aligns with the specific attributes of the data. Overfitting and underfitting refer to situations
when a model is excessively tailored to the training data or inadequately adapted to the validation data,
respectively. The model selection methodology involves employing Machine Learning techniques and
utilizing cross-validation to ensure the model's generalisability and performance.

Algorithm

The efficiency of an algorithm determines its performance, with an inefficient method being one that takes
a significant amount of time to compute. The method's lack of flexibility to changes in transaction pattetns
necessitates the implementation of a more efficient algorithm that employs an approximation approach to
expedite computation. Additionally, it is crucial to design or adopt a more robust and flexible monetary
algorithm. This work employs eight supervised algorithms, specifically the Decision Tree (DT) algorithm,
Naive Bayesian Classifier (NB), Logistic Regression (LR), K-Nearest Neighbor Classifier (KNN), Random
Forest (RF), Support Vector Machine (SVM), Neural Net (NN), and Deep Learning (DL).

Process

The research process is hindered by ineffective or inconsistent data pipelines, inadequate process
automation, and a lack of automation in the training and detection phase. Creating streamlined and
automated data pipelines by utilizing technologies like AutoML approaches to automate the process of
selecting the most suitable model and fine-tuning its hyperparameters.

Resources

The resources utilized in this study encompass limited computer resources, such as GPU or CPU, together
with the time-constrained process of running data for model training. The approach employed for resource
investigation involves identifying solutions that facilitate Machine Learning applications using cloud
computing or platforms that offer access to extensive computer resources. Utllizing parallelization or
distributed computing methods to expedite data processing.

DownSampling

Downsampling, as discussed in this paper, refers to the act of reducing the spatial resolution of an image
while retaining its two-dimensional representation. It is a basic image operation employed to decrease the
storage or transmission demands of images by reducing the number of pixels while preserving the overall
structure and appearance. The study assesses various downsampling approaches, such as binomial filters
and biorthogonal wavelet filters, to identify the most efficient methods for reducing image size while
minimizing data loss and preserving image quality [41]. Downsampling, as used in this research papet, is
the technique used to decrease the resolution of a 2D input image while retaining important information.
The main goal of downsampling is to reduce the storage size of images while preserving as much detail as
possible, to obtain high-quality images without introducing undesirable artifacts. The performance
evaluation of downsampling techniques is carried out using precise metrics to quantify their effectiveness,
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strengths, and limitations. This evaluation is based on rigorous testing conducted on meticulously chosen
image datasets [42].

The process of downsampling in RapidMiner Studio, as shown in Figure 2.10, involves inputting the dataset
from UCI Machine Learning (https://archive.ics.uci.edu/) to extract the data inputted in the form of an
Excel file utilized in the study. The numerical to a binomial operator is utilized to interpret association rules.
Its purpose is to convert numeric data in transaction data into binomial data with the values "true" and
"false". Converting numerical data to binomial involves two main steps: utilizing the "Generate Attributes”
operator and employing the "Discretise by Binning" operator. The "Nominal to numerical" and "Numerical
to Nominal" operators convert data types between nominal and numerical. Following this, the "Filter
Examples" operator is employed. The last stage involves the usage of the "Set Role" operatot, also known
as the Role Operator, which assigns roles to attributes in the dataset. The attribute's role dictates its
utilization in the analysis and modeling process. The set role function includes determining the target or
label, assigning the predictor attribute, designating the ID attribute, specifying the weight attribute, and
setting the special attribute.

The Extract Macro function is employed to retrieve values from data or process outcomes and store them
as macros. In RapidMiner, the term "macro" refers to a vatiable that setves the purpose of storing
information and is utilized at different phases of the analytical process. Additional functionalities of the
extracted macro include: storing values for future utilization, using values in parameters, adapting
operations based on situations, and automating and repeating  procedures.
The sample operator is employed to extract a subset of the dataset. This operator proves highly
advantageous in multiple scenarios, including reducing the dataset's size for preliminary analysis, generating
training and testing datasets, and conducting cross-validation. The primary function of the sample operator
is to diminish the dataset's size and facilitate the creation of training and testing datasets through random
or stratified sampling. Furthermore, the Multiply function is employed to replicate a preexisting dataset.
The operator has great utility in many scenarios, particularly when there is a need to simultaneously execute
multiple actions on a single dataset. Other functionalities of the multiplication operator include dataset
replication, parallel processing, testing and validation, and conducting experiments with multiple models.
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Before Process Down Sampling

After Process the sampling

Figure 2. Process Down Sampling
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Result of Algorithm Naive Bayes
The study employed the Naive Bayes Algorithm in the RapidMiner Studio tool to analyze the Simple
Distribution model's findings for the label attribute "default payment next month." The class returns a

bogus value of 0.500. There are 23 distributions and the class True has a probability of 0.500. There are 23
distributions.

WO o0 0 Lol 00 Ao 10 £ x o0 o0

LIMIT DAL

Figure 3. Simple Chart Algorithm Naive Baye
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Table 1. Simple Distribution Table Naive Bayes

ATIRBUTE PARAVETER FALSE TRUE
LIMIT BAL NEAN 180202.883 130109.656
LIMIT BAL STANDARD DEVIATION 131546.55 115378541
X NEAN 1615 1567
X STANDARD DEVIATION 0.487 0.49
EDUCATION MEAN 1837 1.895
EDUCATION STANDARD DEVIATION 0.81 0.728
MARRAGE MEAN 1565 1528
MARRIAGE STANDARD DEVIATION 0517 0525
AGE VEAN 35.381 35.726
AGE STANDARD DEVIATION 8.974 9.693
PAY 0 MEAN -0.233 0.668
PAY 0 STANDARD DEVIATION 0.943 1383
PAY 2 MEAN -0.309 0.458
PAY 2 STANDARD DEVIATION 1.03 1502
PAY 3 VEAN 035 0.362
PAY 3 STANDARD DEVIATION 1.036 1499
PAY 4 NEAN -0.359 0.255
PAY 4 STANDARD DEVIATION 1 1509
PAY5 MEAN -0.389 0.168
PAY5 STANDARD DEVIATION 0.97 1.483
PAY 6 MEAN -0.3% 0.112
PAY 6 STANDARD DEVIATION 1.001 1.486
BILL AMTL NEAN 52105.48 48509.162
BILL AMTL STANDARD DEVIATION 73571544 73782.067
BILL AVT2 NVEAN 49757.148 47283618
BILL AVT2 STANDARD DEVIATION 71490.467 71651.03
BILL AVT3 MEAN 48046.701 45181.599
BILL AVT3 STANDARD DEVIATION 72008.462 68516.976
BILL AMT4 MEAN 43693.142 42036.951
BILL AMT4 STANDARD DEVIATION 64663.717 64351076
BILL AMTS NVEAN 41134.085 39540.19
BILL AMTS STANDARD DEVIATION 61850.143 61424.696
BILL AMT6 NEAN 39811.737 38271436
BILL AMT6 STANDARD DEVIATION 60623.749 59579.674
PAY AMTL MEAN 6243.008 3397.044
PAY AMTL STANDARD DEVIATION 17786.109 9544.252
PAY AVIT2 MEAN 7202575 3388.65
PAY AVIT2 STANDARD DEVIATION 31899.599 11737.986
PAY AVIT3 MEAN 5593.488 3367.352
PAY AVIT3 STANDARD DEVIATION 15605.804 12959.624
PAY AT NEAN 519,515 3155.627
PAY AT STANDARD DEVIATION 16433.054 11191.973
PAY AVITS MEAN 524,257 3219.14
PAY AVITS STANDARD DEVIATION 17343.929 11944.731
PAY AVIT6 MEAN 5645.396 3441.482
PAY AVIT STANDARD DEVIATION 17805.57 13464.006
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Performance V ector Decision Tree (DT)

The following are the performance metrics of the Decision Tree (DT): Accuracy, Precision, Recall, AUC
(Optimistic), AUC, AUC (Pessimistic).

A Ne

n
. (Fakse Positive)

Type I Fovur

N
(Yalse Nepaltve) IN
(Trwe Negative)

Nu

Type I Erroe

Figure 4. Illustration Figure Confusion Matrix
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Figure 5. Result Accuracy Confusion Matrix Decision Tree

Formula Confusion Matrix

TP+TN
Accuracy = ——————— 1)
TP+FP+TN+FN
. TP TN
Class Precision = or @)
TP+FP ~ TN+FN
TP TN
Class Recall = or 3)
TP+FN ~ TN+FP
Where:
TP: True Positive

TN:  True Negative
TP: True Positive

FP: False Positive
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TN:  True Negative
FN:  False Negative

Results Confusion Matrix Decision Tree

A 6.163+2.712 8.875
ccurac = -
y 6.163+3.924+2.712+473 13.272

6.163 _ 6.163
6.163+3.924  10.087

Class Precision =

2.712 2.712
1T =
473 +2.712 3.185

(@)

6163 _ 6.163
6.163+473  6.636

Class Recall

2.712 2.712
1T =
2.712+ 3.924 6.636

(@)

Precision Decision Tree

=0.6109 x 100% = 61.09%

= 0.5524 x 100% = 85.1491%

=0.9287 x 100% = 92.872%
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= 0.6687 x 100% = 66.87%

= 0.4086 x 100% = 40.867%

The precision values of the Decision Tree differ from the accuracy numbers, although being calculated

using the same formula.

S BTN - LATL i snmign B E e " S

Figure 6. Result Precision Confusion Matrix Decision Tree

Recall Decision Tree

The following are the recall values for the Decision Tree, which differ from the accuracy values using the

same formula.

— R S ETS s praegn #PTL gy S S

Figure 7. Result Recall Confusion Matrix Decision Tree

Performance V ector Decision Tree (DT)

The values for the performance of the vector decision tree, as mentioned before, are as follows: an accuracy
of 66.67% +/- 2.13% (micro average: 66.87%). The available metrics include confusion matrix values,

precision, recall, optimistic AUC values, and pessimistic AUC.
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Figure 8. Performance Vector Decision Tree
Graph Tree Decision Tree (DT)

The graph below illustrates a tree diagram that starts with the September payment, which is determined by
the background education being greater than 5,500. The condition "education < 5,500" is associated with
the explanation provided in the tree diagram graph.

PAY_S
13 .
EDUCATION AGE
500 tsn - ciie
oo PAY_AMTS true PAY_G
o s s , -
PAY 5 PAY_AMTS froe PAY_3
S G Lanos o e
i A et BlLL_AuTE - BL_AMTE
= » » veitsm PN
BILL AMTY BILL AMTe PAY 2 =
~0 e - tmem +TRS0 - 180 -
true false faise AGE BILL_AMTY false
JpSa— scoman <z
izio i i) EDUCATION
= I -4
false PAY_AMTY
S e
false true

Figure 9. Tree Diagram Decision Tree

Description Tree Diagram Decision Tree

Explanation of the tree diagram illustrating the variables associated with the initial payment commencing

in September 2005.
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Tree

Figure 10. Description Tree Diagram Decision Tree

Accnracy Performance Vector Logistic Regression (LR)

The confusion matrix of the logistic regression algorithm can be evaluated using the following metrics:
accuracy, precision, and recall.

L ALl L

Figure 11. Accuracy Performance Vector Logistic Regression

Results Confusion Matrix Logistic Regression

_ 4.672+4.304 8976
4.672+2.332+4.304+1.964  13.272

Accuracy =0.6756 x 100% = 67.56%

4672 4672
T 467242332 7.004

Class Precision = 0.6670 x 100% = 66.70%

4.304 _ 4.304
or —
4.304+1.964 6.268

= 0.6866 x 100% = 68.66%

4.672 _ 4.672

Class Recall = =
4.672+41.964 6.636

= 0.7040x 100% = 70.40%

4.304 _ 4.304
or —
4.304+2.332 6.636

= 0.6485x 100% = 64.85%

Precision Performance 1 ector Logistic Regression (LR)

The logistic regression algorithm's precision calculation has been previously explained. Here are the
precision values obtained using the RapidMiner Studio tool.
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Figure 12. Precision Performance Vector Logistic Regression

Recall Performance Vector Logistic Regression (LR)

The recall calculation in the logistic regression approach has been explained previously. Here are the recall
outcomes obtained using the RapidMiner Studio tool.

e

Figure 13. Recall Performance Vector Logistic Regression

Performance Vector Logistic Regression

The following description provides an overview of the performance of vector logistic regression, which
achieved an accuracy level of 67.63% +/- 0.93% (micro average: 67.63%). Additionally, it includes the
process of determining the confusion matrix value using the aforementioned formula.

Logistic Regression Model

PerformanceVector

Figure 14. Performance Vector Logistic Regression

Presented below is a regression table with characteristics, coefficients, standard coefficients, standard error,

z-values, and p-values.
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Figure 15. Logistic Regression Model
Accuracy Performance 1 ector Naive Bayes (NB)

The accuracy value derived from Naive Bayes modeling can be characterized as follows:

ey, 61 575 &% 4 B0 (nierw seerage 61 VN

Figure 16. Accuracy Performance Vector Naive Bayes

Results Confusion Matrix Naive Bayes

B 2.534+5.553 _8.087
T 2.534+1.083+5.553+4.102  13.272

Accuracy =0.6093 x 100% =60.93 %

.. 2.534 2.534
Class Precision = =
2.534+1.083 3.617

= 0.7005 x 100% = 70.05%

5553  _ 5.553
1‘ pu—
5.553+4.102  6.636

=0.8367 x 100% = 83.67%

2.534 _ 2.534

Class Recall = =
2.534+4.102  6.636

=0.3818 x 100% = 38.18%

5553  _ 5.553
1‘ pu—
5.553+1.083  6.636

= 0.8367 x 100% = 83.67%
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Precision Performance 1 ector Naive Bayes (NB)

The precision value derived from the naive Bayes algorithm is given by the formula shown above:

s BT M G LA peirn anernge 2 510 entive slee wae|

Figure 17. Precicison Performance Vector Naive Bayes

Recall Performance 1 ector Naive Bayes (NB)

The formula above describes the recall value produced using Naive Bayes:

reaat B1EEN ¥4 2% (s averege L1 AR | (BNetive cms e

Figure 18. Recall Performance Vector Naive Bayes

Performance VVector Performance Naive Bayes (NB)
The vector performance results are provided here, including accuracy, precision, and recall numbers:

PerformanceVector

Figure 19. Performance Vector Performance Naive Bayes

Accuracy Performance Vector Random Forest (RF)

The accuracy value derived from Random Forest (RF) modeling can be characterized as follows:

sccuracy: 01 13% oh £ W% Gwers aversge. 89 125

Figure 20. Accuracy Performance Vector Performance Random Forest
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Results Confusion Matrix Random Forest

Accuracy = 5973230 _ 9187 _ 56922 x 100% =69.22%
5.957+3.406+3.230+679 13.272
Class Precision = ——a2/ =397 _ 5 6362 < 100% = 63.62%
5.957+3.406 9.363
or —230 3230 _ 9562 « 100% = 82.62%
3.230+679 3.909
Class Recall 2957 3957 _ (18976 x 100% = 89.76%

T 59574679  6.636

. 3.230 _3.230
O =
3.230+3.406 6.636

= 0.4867 x 100% =48.67 %
Precision Performance 1 ector Random Forest (RF)

The precision value derived from Random Forest (RF) modeling can be characterized as follows:

Pt BEAEL S AL s seacage B LK | paades satd sl

Figure 21. Precision Performance Vector Performance Random Forest

Recall Performance 1V ector Random Forest (RF)

The recall value produced from Random Forest modeling can be defined as:

P

Figure 22. Recall Performance Vector Performance Random Forest

Performance 1 ector Random Forest

The performance metrics of the vector random forest model are as follows: accuracy, precision, and recall
values.

PerformanceVector
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Figure 23. Performance Vector Random Forest

Graph Model Random Forest

The graphic model of the random forest method is depicted as follows, commencing with the payments in
September 2005 and subsequently incorporating the education and age data.

Figure 24. Graph Model Random Forest

Description Random Forest Model (Randon Forest)

This text describes the tree graph used in the Random Forest (RF) algorithm, specifically focussing on the
concepts of True Positive, False Positive, True Negative, and False Negative.

Tree

Figure 25. Description Model Random Forest

Accuracy Performance Vector K-Nearest Neighbor Classifier (KINN)

The accuracy value derived from K-NN modeling can be characterized as follows:

Sy AT W LN (e eaage M LN
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Figure 26. Accuracy Performance Vector K-Nearest Neighbor Classifier
Results Confusion Matrix: K-Nearest Neighbor Classifier

B 3.859 +4.042 _7.901
" 3.859 + 2.594 + 4.042 + 2.777  13.272

Accuracy = 0.5953 x 100% = 59.53%

.. 3.859 3.859
Class Precision = =
3.859 +2.954 6.813

=0.5664 x 100% = 56.64%

4.042 4.042
or =
4.042 + 2.777 6.819

=0.5927 x 100% = 59.27 %

3859 _ 3.859
3.859 +2.777  6.636

Class Recall =0.5815 x 100% = 58.15%

4.042 4.042
or =
4.042 + 2.594 6.636

= 0.6091 x 100% = 60.91%

Precision Performance 1 ector K-Nearest Neighbor Classifier (KINN)
The precision value derived from K-NN modeling can be characterized as follows:

reccor. ML = | 6T, PeTe seerage TN\ guatee CIT wiel

Figure 27. Precision Performance Vector K-Nearest Neighbor Classifier

Recall Performance 1 ector K-Nearest Neighbor Classifier (KINN)

The recall value derived from K-NN modelling can be defined as:

O BTN b LN s werage 1 i dtaes W

Figure 28. Recall Performance Vector K-Nearest Neighbor Classifier

K-Nearest Neighbor Classification

The K-Nearest Neighbor classification algorithm can be defined as follows:

KNNClassification

Figure 29. K-Nearest Neighbor Classifier Classification
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Accuracy Performance V'ector Neural Net (NN)

The accuracy value derived from Neural Net (NN) modeling can be defined as follows:

—— TR S LA e weage T

Figure 30. Accuracy Performance Vector Neural Net

Results Confusion Matrix Neural Net

Accuracy = 2259 2032 = 2291 — 70000 x 100% = 70.00%
5.259 + 2.604 + 4.032 + 1.377 13.271
Class Precision = ——222 = 3259 _ (1 6688 x 100% = 66.88 %

5.259 + 2.604  7.863

4.032 _4.032
4.032 +1.377  5.409

or = 0.7454 x 100% = 74.54 %

5259  _ 5.259
5259 +1.377  6.636

Class Recall =0.7924 x 100% = 79.24%

4.032 4.032
1 =
4.032 + 2.604 6.636

o =0.6075 x 100% = 60.75%

Precision Performance 1 ector Nenral Net (NN)

The precision value derived from neural network modeling can be characterized as follows:

preeminn TRARS o0 LATS (mira dvaiage T4 M%) (postive dass vaw)
- e . b oed peei

1oed e "

Figure 31. Precision Performance Vector Neural Net

Recall Performance 1 ector Neural Net (INN)

The recall value derived from neural network modeling can be defined as follows:

oAl §0 7% ¥ LM (r¥ero awerage: S0.70%) fsseM e Sens )

Figure 32. Recall Performance Vector Neural Net
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Performance Vector Neural Net

The vector neural net performance is characterized by accuracy, precision, and recall values, which are
outlined below:

PerformanceVector

Figure 33. Performance Vector Neural Net

Tmproved Neural Net

The graph below illustrates the interconnections between the input, hidden 1, and output layers.
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Figure 34. Performance Vector Neural Net
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Improved Neural Net
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Figure 35. Improved Neural Net
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Performance Vector Support V'ector Machine (ST"M)

The accuracy value detived from Support Vector Machine (SVM) modeling can be characterized as follows:

L L L

Figure 36. Accuracy Performance Vector Neural Net

Results accnracy Support 1V ector Machine (ST M)

5.426 + 3.646 _9.072
5.426 +2.990 + 3.646 +1.210  13.272

= 0.6835 x 100% = 68.35%

Accuracy =

2426 _ 3420 _ () 6447 x 100% =64.47%
5.426 + 2.990 8.416

Class Precision =

or 3.646 _ 3646 _ 0.7508 x 100% = 75.08%
3.646 + 1.210  4.856

5426 5426
5426 +1.210  6.636

Class Recall =0.8176 x 100% = 81,76%

080 3% .5494 x 100% = 54.94%
3.646 + 2.990 6.636

or

Precision Performance Support 1 ector Machine (S§1°M)
The precision value derived from Support Vector Machine (SVM) modeling can be characterized as follows:

L L T LT S e

Figure 37. Precision Performance Support Vector Machine

Recall Performance Support Vector Machine (§17M)

The recall value derived from Support Vector Machine (SVM) modeling can be defined as follows:

B L T L P T R P R "

Figure 38. Recall Performance Support Vector Machine

Kernel Model Support Vector Machine (S1°M)

The kernel model of the Support Vector Machine (SVM) derived from modeling can be characterized by
the following parameters: the total number of Support Vectors is 13272, and the bias (offset) is -0.180.
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Total number of Rupgort Vectors) 13272

Bias (offset): -0.100
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Figure 39. Kernel Model Support Vector Machine (SVM)

Weight Table Support Vector Machine (S§1°M)

The Weight Table value derived from Support Vector Machine (SVM) modeling can be characterized as

follows:

Table 2. Kernel Model Support Vector Machine (SVM)

LIMIT BAL -0.226
SEX 074
EDUCATION -0.097
MARRIAGE -0.088
AGE 0.077
PAY 0 0.693
PAY 2 0.148
PAY 3 0.061
PAY 4 0.017
PAY § 0.028
PAY 6 -0.046
BILL AMT1 0.370
BILL _AMI2 0.088
BILL_AMI3 0.045
BILL_AMT4 0.164
BILL AMIS 0.039
BILL _AMTI6 -0.080
PAY _AMT1 -0.085
PAY AMTI2 .148
PAY AMT3 0.002
PAY AMT4 -0.010
PAY_AMIS -0.006
PAY _AMT6 -0.00m
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Weight Visualizations Support V'ector Machine (ST"M)

The Weight Visualisations value derived from Support Vector Machine (SVM) modelling can be
represented in a graph as follows:

Kernel Mode! Weights =
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Figure 40. Weight Visualizations Support Vector Machine (SVM)
Support VVector Visualizations Support V'ector Machine (ST'M)

The Weight Visualization value derived by Support Vector Machine (SVM) modeling can be represented
in a graph as follows:

X 296, ¥ ~1.3386541469360662

Function Value
.
-
.

W

(] ™ o o e Sk “h el “ e 10k AL 12k 1k
Coumtet

w false o true

Figure 41. Weight Visualizations Support Vector Machine (SVM)
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Receiver Operating Characteristic (ROC) Curve Downsampling

The ROC graph presented below illustrates the accuracy calculation of each algorithm. Based on the
research findings, the Downsampling algorithm with the highest performance is Decision Tree (DT),
followed by Random Forest (RF) in second place. Deep Learning (DL) ranks third, Neural Net (NN)

fourth, Naive Bayes (NB) fifth, Logistic Regression (LR) sixth, Support Vector Machine (SVM) seventh,
and K-Nearest Neighbor Classifier (K-NN) last.

Figure 42. Receiver Operating Characteristic (ROC) Curve Downsampling
Performance Vector Deep learning (DL)

The accuracy value detived from Deep Learning (DL) modeling can be defined as:

Figure 43. Accuracy Performance Vector Deep Learning (DL)

Results Acenracy Deep 1 earning (DL)

B 3.696 + 5.299 8,995
T 3,696 + 1.337 + 5.299 + 2.940  13.272

Accuracy = 0.677x 100% = 67.77%

3.696 _3.696
3.696 + 1.337  5.033

0.7343 x 100% = 73.43%

Class Precision

5.299 5.299
or =
5.299 + 2.940 8.239

=0.6431 x 100% = 64.31%

3.696 _ 3696

Class Recall = = = 0.5569 x 100% = 55.69%
3.696 +2.940  6.636
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5.299 _5.299
5.299 + 1337  6.636

or

= 0.7985 x 100% = 79.85%
Precision Performance Deep Learning (DL)

The precision value derived from Deep Learning (DL) modelling can be characterised as follows:

w0 S BN e seevge AT L gmates S e

Figure 44. Precision Performance Vector Deep Learning (DL)

Recall Performance Deep L earning (DL)

The recall value derived from Deep Learning (DL) modeling can be defined as:

ot PN 4 DTN e verage PABN| e clen Wae|

Figure 45. Recall Performance Vector Deep Learning (DL)

Performance Vector Deep L earning (DL)

The Deep Learning vector performance is presented here, including accuracy, precision, and recall values.

PerformanceVector

Figure 46. Performance Vector Deep Learning (DL)

Imbalance
This paper discusses the concept of class distribution imbalance in a dataset, where one class (majority
class) greatly surpasses another class (minority class). This imbalance is commonly observed in real-world

applications, where the minority class, usually the positive class, is much smaller in proportion compared
to the majority class. This poses challenges in achieving accurate classification [43].
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This paper discusses the concept of imbalance, which refers to situations where datasets have significantly
unequal class distributions. Imbalance is a common problem in various fields, including telecommunication
management, bioinformatics, fraud detection, and medical diagnosis. It poses a significant challenge in data
mining and pattern recognition, as it can hinder the learning process for machine learning algorithms [44].

This paper discusses the concept of skewed class distribution in classification tasks, when one class is much
more prevalent than the other class in the dataset [45].

Figure 47. Process Imbalance Using RapidMiner Studio
Tree Graph Decision Tree (DT) Inmbalance

The tree graph is characterized by the interdependence of initial payments, as exemplified by the Decision
Tree (DT) graph provided below:

o -
o - »an 1_
. _— o )
BT o "~ ~o
b A - e - Y
o . - o e - - . .
- o - e - e - .
.- AN . o Pg— —

Figure 48. Tree Graph Decision Tree (DT)
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Performance Vector Decision Tree (DT)

The accuracy value derived from Decision Tree (DT) modeling can be characterized as follows:

N L N e T

Figure 49. Accuracy Performance Vector Decision Tree (DT)

Results Acenracy Decision Tree (DT)

22.298 + 2.274 _ 24572

= =0.8190 x 100% = 81.90%
22.298 +4.362 + 2.274 + 1.066  30.000

Accuracy

22.298 _22.298
22.298 + 4.362 26.660

Class Precision = =0.8363 x 100% = 83.63 %
2.274 _ 2274

= = 0.6808 x 100% = 68.08%
2274 +1.066  3.340

or

22.298 _22.298
22.298 +1.066 23.364

Class Recall = =0.9543 x 100% = 95.43%
2.274 _ 2274

= =0.3426 x 100% = 34.26%
2.274 +4.362  6.636

Precision Performance Decision Tree (DT)

The precision value derived from Decision Tree (DT) modeling can be characterized as follows:

- — T = AN i g 5 S i B Pt

Figure 50. Precision Performance Vector Decision Tree (DT)

Recall Performance Decision Tree (DT)

The recall value derived from Decision Tree (DT) modeling can be defined as follows:

Figure 51. Recall Performance Vector Decision Tree (DT)
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Performance V ector Decision Tree (DT)

The performance metrics of the Decision Tree model, including accuracy, precision, and recall values, are
outlined below:

PerformanceVector

Figure 52. Performance Vector Decision Tree (DT)

Simple Charts Distributions Naive Bayes (NB)

The graph illustrates the distribution of the Naive Bayes algorithm for imbalance, showcasing the true and
false values in the following diagram.

Figure 53. Simple Charts Distribution Decision Tree (DT)
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Conclusion

This research employs four machine learning algorithms, as previously mentioned [6][51]: Imbalance
Technique, Downsampling Technique, Weighting Technique, SMOTE Technique. The study used eight
algorithms K-Nearest Neighbor (KNN), Logistic Regression (LR), Naive Bayesian Classifier (NB), Random
Forest (RF), Decision Tree (DT), Neural Net (NN), Deep learning (DL), Support Vector Machine (SVM).

Imbalance technique for Decision Tree (DT) algorithm with accuracy level value of 81.91% with AUC
value of 0.937 and Naive Bayes Classifier (NB) value with accuracy level value of 71.43% and AUC value
of 0.737. Downsampling technique for Decision Tree (DT) algorithm with accuracy level value of
66.87% with AUC value of 0.953, Logistic Regression (LR) algorithm with accuracy level value of 67.63%
with AUC value of 0.729, Naive Bayes Classifier (NB) algorithm with accuracy level value of 60.93% with
AUC value of 0.740, Random Forest (RF) algorithm with accuracy level value of 69.22% with AUC value
of 0.811, K-Nearest Neighbor (KNN) algorithm with accuracy level value of 59.53% with AUC value of
0.627, Neural Net (NN) algorithm with accuracy level value of 70.00% with AUC value of 0.767, Support
Vector Machine (SVM) algorithm with accuracy level value of 68.35% with AUC value of 0.727, Deep
Learning (DL) algorithm with accuracy level value of 67.77% with AUC value of 0.777. Weighting technique
for the Naive Bayes Classifier (NB) algorithm with an accuracy level value of 60.56% with an AUC value
of 0.7306, the Decision Tree (DT) algorithm with an accuracy level value of 64.31% with an AUC value of
0.956.

The SMOTE technique for the Decision Tree (DT) algorithm with an accuracy level value of 68.15% with
an AUC value of 0.945, the Naive Bayes Classifier (NB) algorithm with an accuracy level value of 58.42%
with an AUC value of 0.740.
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