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Abstract  

Explained in this paper is how data mining provides a way to work on distributed Machine Learning (ML) systems, which are already 
often used in data mining operations. This paper examines eight strategies applied in cases of Taiwanese customer default. The eight 
methods. Eight distinct classifications are evaluated for prediction accuracy: Random Forest, Naïve Bayesian Classifier, K-Nearest 
Neighbour, Support Vector Machine, Neural Net, Decision Tree, Logistic Regression, and Deep Learning. Utilizing this method 
raises the possibility of many consumer loans and is one way to evaluate risk management outcomes, such as the exact probability of 
credit card loan default. Large financial losses for the borrower could result from default due to the method's overall effectiveness and 
efficiency. 30,000 Taiwanese clients with twenty-five qualities, all of whom have full payment histories, are the subject of this study's 
payment data analysis. Four approaches (weighting, SMOTE, Imbalance, and Downsampling) were used to balance the data in this 
study. We shall contrast four approaches and outline eight distinct approaches in this study. 

Keywords: Default of Credit Card Payment, Machine Learning, Debt, Balance Data, Credit History Data, Taiwan Banks. 

 

Introduction 

Credit card payment is a commonly utilized method for settling shopping expenses. An advantage of having 
a card as a client is that it guarantees payment for the expenses incurred by the client while purchasing 
services and items [1]. Numerous banks provide credit card payment services to their consumers, typically 
offering exclusive promotions and discounts for credit card transactions [2]. [3] The bank will get benefits 
and increase its customer base by providing promotional discounts to credit card holders. Providing 
incentives to credit card holders can capture the interest of young individuals in Taiwan who are the 
intended customers [4]. Historical data indicates that the low income of young credit card holders led to a 
rise in unpaid payments, increasing credit card debt. This can lead to issues in Taiwan, such as the rising 
prevalence of suicides and other illicit activities undertaken to settle credit card debts. The problem resulting 
from several clients encountering payment failure can lead to a decrease in consumer confidence. Recent 
data indicates that credit card issuing banks are experiencing a crisis as the accumulation of loans continues 
to rise [5]. Hence, our study, based on extensive research and analysis of multiple prior studies on payment 
failure prediction, will serve as a valuable resource for forecasting credit card payment defaults in the future. 
[6] The researcher's study examines instances of payment failures among credit card users in Taiwan. The 
study also evaluates the accuracy of probability predictions using six data mining techniques: K-Nearest 
Neighbor classifiers (KNN), Logistic Regression (LR), Discriminant Analysis (DA), Naïve Bayes classifier 
(NB), Artificial Neural Networks (ANNs), and Classification Trees (CTs). This research examines six 
mining engineering approaches and highlights subtle variations among the six artificial neural network 
methods. The findings demonstrate that the artificial neural network achieves more precise classification 
compared to the other five methods. The artificial neural network demonstrated superior performance in 
accurately forecasting the chance of default, as evidenced by its high R2 value of 0.9647 (near to 1), low 
regression intercept of 0.0145 (almost to 0), and strong regression coefficient of 0.9971 (close to 1). The 
predictive default probability supplied by an Artificial Neural Network (ANN) is the sole representation of 
probability that may be utilized. From a risk control standpoint, determining the likelihood of default is 
more significant than categorizing clients into binary outcomes of hazardous and non-risky. Hence, it is 
advisable to employ artificial neural networks instead of alternative data mining techniques, like logistic 
regression, to tackle these client scores. [7] The paper utilizes seven methods, specifically: K-Nearest 
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Neighbor classifiers (KNN), Logistic Regression (LR), Naïve Bayes classifier (NB), Random Forest (RF), 
Support Vector Clustering (SVC), and Linear Support Vector Clustering (SVC). The analysis examines 
payment failure data from 30,000 clients in Taiwan, including twenty-three features. The findings indicate 
that only a small number of the factors employed are sufficient for analyzing the characteristics of default 
in lending decisions.  

The results offer valuable feedback to credit assessors, lending institutions, and business analysts for a 
comprehensive study. In addition, they emphasize the significance of employing cautious lending methods 
to gain a deeper understanding of the behavior of credit card borrowers, along with certain accounting, 
historical, and demographic attributes. The majority of customers in developed countries consistently 
maintain personal credit through the use of credit cards. This study aims to identify the essential traits that 
enable cardholders to make reasonable decisions to optimize their satisfaction. Nevertheless, certain credit 
card clients continue to demonstrate a tendency to misuse their credit cards and occasionally fall victim to 
manipulation by credit institutions. The primary significance of this work is in the incorporation of crucial 
client elements, such as financial data, outstanding payments, and other operational attributes, which 
highlight the need to assess their reliability. A variety of machine learning algorithms were utilized to analyze 
the credit portfolio from April to September 2005. This portfolio consisted of consumer credit card data, 
and the purpose was to evaluate the creditworthiness of these clients. The precision of the generated model 
varies between 70% and 82.6%. Thus, its precision might be deemed satisfactory and consequently 
employed by financial institutions or credit card businesses to classify prospective clients according to their 
financial stability throughout the approval procedure, while utilizing less data instead of dealing with 
numerous customers. Financial, population-related, and credit-related data.  

Specifically, there were 30,000 instances of credit card cases, with 23,364 cases showing no signs of default 
(meaning they were paid on time or with a minor delay), and a total of 6,636 cases were classified as default 
conditions based on customer circumstances in September 2005. [8] In his comparative study of other 
algorithms, specifically Random Forest (RF), AdaBoost, and the bagging algorithm, the bagging algorithm 
yielded a result of 0.72. [9] The research focuses on loan data collected between 2012 and 2014 from the 
Korea Student Aid Foundation. The objective of this study is to create a prediction model for clients who 
are unable to make credit card payments. The research employs both a logistic regression model and the 
Cox proportional hazard model to develop a risk prediction model. [10] This study explores the utilization 
of three methodologies, specifically decision trees, neural networks, and logistic regression, to address and 
resolve payment issues. Additionally, it investigates the effectiveness of combining these techniques with 
ensemble models. 

Literature Review 

Since 1997, there has been a significant amount of study conducted on the topic of credit card payment 
failures. Credit cards play a crucial role in supporting banking operations, particularly by offering discounts 
and the convenience of deferred payment. Based on prior research findings, numerous machine-learning 
techniques are employed to identify instances of payment failures. In 1997, a researcher [11] was 
undertaking research on credit cards in the United Kingdom (UK) using formal statistical methods to 
classify class divisions into 'good' or 'poor' categories. This tool can evaluate the credit expansion of 
consumers who default on their payments. [12] In his study, the researcher employed conventional 
statistical techniques, specifically logistic regression and discriminant analysis, to assess the creditworthiness 
of clients. Additionally, machine learning methods such as neural networks, decision trees, and support 
vector machines were successfully employed to classify clients as either eligible borrowers or potential loan 
defaulters. Among the three methods employed to assess decision trees and evaluate their capabilities, they 
are readily comprehensible. This study employs eight methodologies that have been previously established. 
However, this research distinguishes itself by utilizing a combination of these methods, namely Decision 
Tree (DT), Naïve Bayes Classifier (NB), Logistic Regression (LR), K-Nearest Neighbor Classifier (KNN), 
Random Forest (RF), Support Vector Machine (SVM), Neural Net (NN), and Deep Learning (D.L.). There 
are four approaches for balancing data: downsampling, imbalance, Synthetic Minority Oversampling 
Technique (SMOTE), and weighting. 
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Downsampling 

Downsampling is a signal processing technique that includes reducing the sample rate of a signal. This can 
be achieved for several goals, like as reducing the amount of data to be processed or transmitted, or 
decreasing the resolution of a signal. Downsampling in digital signal processing is the process of selecting 
and removing samples from a signal by keeping only every Nth sample and discarding the rest. For example, 
if you have a signal that has been sampled at a frequency of 1000 Hz and you reduce the sampling rate by 
a factor of 2, you would keep every other sample, thereby effectively reducing the sampling rate to 500 Hz 
[13].  

Aliasing is a phenomenon that can happen during downsampling, in which the high-frequency components 
of a signal are mistakenly portrayed as lower frequencies. In order to avoid aliasing, it is common practice 
to first apply a low-pass filter to the signal before downsampling. This filter removes high-frequency 
components that could cause aliasing when the signal is downsampled [14]. 

Downsampling is a frequently used approach in image processing to decrease the resolution of an image, 
hence reducing its size and potentially saving storage space or improving processing speed. Downsampling 
is a useful technique for reducing the size or resolution of signals or images while maintaining crucial data, 
as long as potential aliasing effects are considered [15]. 

Imbalances 

An "imbalance" refers to the lack of equilibrium or proportionality in a system or situation [16]. It suggests 
that the components inside the system are spread unevenly or not in the correct proportions [17]. This term 
is relevant in various circumstances, encompassing [18]: 

Physical balance, in the context of the physical world, pertains to the condition of stability or equilibrium 
where an object or system is inclined or leaning excessively in one direction.  

In the realm of chemistry, the phrase "chemical balance" denotes a scenario characterized by an 
asymmetrical dispersion of substances or an inequitable ratio of reactants and products inside a chemical 
reaction.  

Emotional Balance: In the realm of psychology, an imbalance can be defined as an inequitable allocation of 
emotions or an undesirable predominance of negative emotions to positive ones. 

Economic equilibrium refers to a state in economics when there is a balance in the distribution of wealth, 
absence of trade deficits, and equal growth throughout various areas or industries. 

Social balance, within the realm of sociology, refers to inequalities in power, privilege, or access to resources 
within a specific society.  

Work-Life Balance: Imbalance in the context of personal growth may suggest an inequitable distribution of 
time and energy between work, personal life, and other endeavors. 

Identifying and addressing inequalities is often crucial for maintaining stability, coherence, and efficiency in 
different systems, such as physical, chemical, social, or human systems. 

Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE stands for Synthetic Minority Over-sampling Technique. Oversampling is a technique used in 
machine learning to address the problem of class imbalance. In many real-world datasets, especially in binary 
classification problems, there is frequently a significant imbalance between the representation of the 
minority class (with fewer occurrences) and the majority class (with more instances) [19]. Class imbalance 
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can lead to the creation of biased models that have inferior performance in predicting the minority class 
[20]. 

SMOTE functions by generating synthetic instances of the minority class to balance the class distribution. 
This is accomplished by creating new instances of the minority class that closely match the existing ones. 
Consequently, the dataset is enlarged, providing a greater amount of precise training data for the minority 
class. This improves the effectiveness of machine learning models, particularly in scenarios with imbalanced 
class distributions [21]. 

Weighting 

Weighting refers to the process of assigning different levels of importance or influence to individual objects 
inside a system or dataset. This approach is widely used in the domains of statistics, data analysis, and 
machine learning [22].  
Weighting, in the context of statistical analysis, refers to the act of allocating higher priority to certain data 
points or observations based on their level of significance or reliability. In the domain of survey research, 
weighting is commonly used to adjust the results to improve the representativeness of the target population. 
This is accomplished by giving higher priority to underrepresented groups [23].  
Weighting is a machine-learning technique that enables the prioritization of some samples or features over 
others during the training process. This can result in improved performance of the model on particular 
tasks or subsets of data [24]. Weighting allows for a more sophisticated and precise analysis or modeling by 
acknowledging and including the relative importance of multiple factors [25]. 

Methodology 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1. Purpose Methodology 
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Data 

The dataset consists of 30,000 data points, with 24 variables as indicated in table 1. Data quality selection 
is employed to identify and address issues such as unclean, noisy, or erroneous transaction data. The 
purpose of this process is to determine the presence of fraud and assess the informativeness of the data in 
detecting fraudulent activities. The period. The data gathering methodology employs preprocessing 
techniques to cleanse data and mitigate noise, as well as employ data augmentation or synthetic data 
synthesis techniques. 

Model 

The choice of a model that is either excessively intricate or overly simplistic, and the failure to select a 
model that aligns with the specific attributes of the data. Overfitting and underfitting refer to situations 
when a model is excessively tailored to the training data or inadequately adapted to the validation data, 
respectively. The model selection methodology involves employing Machine Learning techniques and 
utilizing cross-validation to ensure the model's generalisability and performance. 

Algorithm 

The efficiency of an algorithm determines its performance, with an inefficient method being one that takes 
a significant amount of time to compute. The method's lack of flexibility to changes in transaction patterns 
necessitates the implementation of a more efficient algorithm that employs an approximation approach to 
expedite computation. Additionally, it is crucial to design or adopt a more robust and flexible monetary 
algorithm. This work employs eight supervised algorithms, specifically the Decision Tree (DT) algorithm, 
Naïve Bayesian Classifier (NB), Logistic Regression (LR), K-Nearest Neighbor Classifier (KNN), Random 
Forest (RF), Support Vector Machine (SVM), Neural Net (NN), and Deep Learning (DL). 

Process 

The research process is hindered by ineffective or inconsistent data pipelines, inadequate process 
automation, and a lack of automation in the training and detection phase. Creating streamlined and 
automated data pipelines by utilizing technologies like AutoML approaches to automate the process of 
selecting the most suitable model and fine-tuning its hyperparameters. 

Resources  

The resources utilized in this study encompass limited computer resources, such as GPU or CPU, together 
with the time-constrained process of running data for model training. The approach employed for resource 
investigation involves identifying solutions that facilitate Machine Learning applications using cloud 
computing or platforms that offer access to extensive computer resources. Utilizing parallelization or 
distributed computing methods to expedite data processing. 

DownSampling 

Downsampling, as discussed in this paper, refers to the act of reducing the spatial resolution of an image 
while retaining its two-dimensional representation. It is a basic image operation employed to decrease the 
storage or transmission demands of images by reducing the number of pixels while preserving the overall 
structure and appearance. The study assesses various downsampling approaches, such as binomial filters 
and biorthogonal wavelet filters, to identify the most efficient methods for reducing image size while 
minimizing data loss and preserving image quality [41]. Downsampling, as used in this research paper, is 
the technique used to decrease the resolution of a 2D input image while retaining important information. 
The main goal of downsampling is to reduce the storage size of images while preserving as much detail as 
possible, to obtain high-quality images without introducing undesirable artifacts. The performance 
evaluation of downsampling techniques is carried out using precise metrics to quantify their effectiveness, 
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strengths, and limitations. This evaluation is based on rigorous testing conducted on meticulously chosen 
image datasets [42]. 

The process of downsampling in RapidMiner Studio, as shown in Figure 2.10, involves inputting the dataset 
from UCI Machine Learning (https://archive.ics.uci.edu/) to extract the data inputted in the form of an 
Excel file utilized in the study. The numerical to a binomial operator is utilized to interpret association rules. 
Its purpose is to convert numeric data in transaction data into binomial data with the values "true" and 
"false". Converting numerical data to binomial involves two main steps: utilizing the "Generate Attributes" 
operator and employing the "Discretise by Binning" operator. The "Nominal to numerical" and "Numerical 
to Nominal" operators convert data types between nominal and numerical. Following this, the "Filter 
Examples" operator is employed. The last stage involves the usage of the "Set Role" operator, also known 
as the Role Operator, which assigns roles to attributes in the dataset. The attribute's role dictates its 
utilization in the analysis and modeling process. The set role function includes determining the target or 
label, assigning the predictor attribute, designating the ID attribute, specifying the weight attribute, and 
setting the special attribute. 

The Extract Macro function is employed to retrieve values from data or process outcomes and store them 
as macros. In RapidMiner, the term "macro" refers to a variable that serves the purpose of storing 
information and is utilized at different phases of the analytical process. Additional functionalities of the 
extracted macro include: storing values for future utilization, using values in parameters, adapting 
operations based on situations, and automating and repeating procedures.  
The sample operator is employed to extract a subset of the dataset. This operator proves highly 
advantageous in multiple scenarios, including reducing the dataset's size for preliminary analysis, generating 
training and testing datasets, and conducting cross-validation. The primary function of the sample operator 
is to diminish the dataset's size and facilitate the creation of training and testing datasets through random 
or stratified sampling. Furthermore, the Multiply function is employed to replicate a preexisting dataset. 
The operator has great utility in many scenarios, particularly when there is a need to simultaneously execute 
multiple actions on a single dataset. Other functionalities of the multiplication operator include dataset 
replication, parallel processing, testing and validation, and conducting experiments with multiple models. 
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Before Process Down Sampling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After Process the sampling 

Figure 2. Process Down Sampling 
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Result of Algorithm Naïve Bayes 

The study employed the Naïve Bayes Algorithm in the RapidMiner Studio tool to analyze the Simple 
Distribution model's findings for the label attribute "default payment next month." The class returns a 
bogus value of 0.500. There are 23 distributions and the class True has a probability of 0.500. There are 23 
distributions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simple Chart Algorithm Naïve Baye
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ATTRIBUTE PARAMETER FALSE TRUE

LIMIT_BAL MEAN 180202.883 130109.656

LIMIT_BAL STANDARD DEVIATION 131546.55 115378.541

SEX MEAN 1.615 1.567

SEX STANDARD DEVIATION 0.487 0.496

EDUCATION MEAN 1.837 1.895

EDUCATION STANDARD DEVIATION 0.81 0.728

MARRIAGE MEAN 1.565 1.528

MARRIAGE STANDARD DEVIATION 0.517 0.525

AGE MEAN 35.381 35.726

AGE STANDARD DEVIATION 8.974 9.693

PAY_0 MEAN -0.233 0.668

PAY_0 STANDARD DEVIATION 0.943 1.383

PAY_2 MEAN -0.309 0.458

PAY_2 STANDARD DEVIATION 1.03 1.502

PAY_3 MEAN -0.325 0.362

PAY_3 STANDARD DEVIATION 1.036 1.499

PAY_4 MEAN -0.359 0.255

PAY_4 STANDARD DEVIATION 1 1.509

PAY_5 MEAN -0.389 0.168

PAY_5 STANDARD DEVIATION 0.97 1.483

PAY_6 MEAN -0.396 0.112

PAY_6 STANDARD DEVIATION 1.001 1.486

BILL_AMT1 MEAN 52105.48 48509.162

BILL_AMT1 STANDARD DEVIATION 73571.544 73782.067

BILL_AMT2 MEAN 49757.148 47283.618

BILL_AMT2 STANDARD DEVIATION 71490.467 71651.03

BILL_AMT3 MEAN 48046.701 45181.599

BILL_AMT3 STANDARD DEVIATION 72008.462 68516.976

BILL_AMT4 MEAN 43693.142 42036.951

BILL_AMT4 STANDARD DEVIATION 64663.717 64351.076

BILL_AMT5 MEAN 41134.085 39540.19

BILL_AMT5 STANDARD DEVIATION 61859.143 61424.696

BILL_AMT6 MEAN 39811.737 38271.436

BILL_AMT6 STANDARD DEVIATION 60623.749 59579.674

PAY_AMT1 MEAN 6243.008 3397.044

PAY_AMT1 STANDARD DEVIATION 17786.109 9544.252

PAY_AMT2 MEAN 7202.575 3388.65

PAY_AMT2 STANDARD DEVIATION 31899.599 11737.986

PAY_AMT3 MEAN 5593.488 3367.352

PAY_AMT3 STANDARD DEVIATION 15605.804 12959.624

PAY_AMT4 MEAN 5519.515 3155.627

PAY_AMT4 STANDARD DEVIATION 16433.054 11191.973

PAY_AMT5 MEAN 5524.257 3219.14

PAY_AMT5 STANDARD DEVIATION 17343.929 11944.731

PAY_AMT6 MEAN 5645.396 3441.482

PAY_AMT6 STANDARD DEVIATION 17805.57 13464.006

Distribution Table Algorithm Naïve Bayes 

Table 1. Simple Distribution Table Naïve Bayes 
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Performance Vector Decision Tree (DT) 

The following are the performance metrics of the Decision Tree (DT): Accuracy, Precision, Recall, AUC 
(Optimistic), AUC, AUC (Pessimistic). 

 

 

 

 

 

 

       

Figure 4. Illustration Figure Confusion Matrix 

Accuracy Decision Tree 

 

 

 

 

      Figure 5. Result Accuracy Confusion Matrix Decision Tree 

Formula Confusion Matrix 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
    (1) 

    

𝐶𝑙𝑎𝑠𝑠 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑜𝑟 

𝑇𝑁

𝑇𝑁+𝐹𝑁
   (2) 

 

𝐶𝑙𝑎𝑠𝑠 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑜𝑟 

𝑇𝑁

𝑇𝑁+𝐹𝑃
   (3) 

Where: 

TP: True Positive  

TN: True Negative 

TP: True Positive 

FP: False Positive 
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TN: True Negative 

FN: False Negative 

Results Confusion Matrix Decision Tree 

Accuracy = 
6.163+2.712

6.163+3.924+2.712+473 
 = 

8.875

13.272
 = 0.6687 x 100% = 66.87% 

Class Precision = 
6.163

6.163+3.924
 = 

6.163

10.087
 = 0.6109 x 100% = 61.09%    

or 
2.712

473 +2.712
 = 

2.712

3.185
 = 0.5524 x 100% = 85.1491% 

Class Recall = 
6.163

6.163+473
 = 

6.163

6.636
 = 0.9287 x 100% = 92.872% 

or 
2.712

2.712+ 3.924
 = 

2.712

6.636
 = 0.4086 x 100% = 40.867% 

Precision Decision Tree 

The precision values of the Decision Tree differ from the accuracy numbers, although being calculated 
using the same formula.  

 

 

 

 

Figure 6. Result Precision Confusion Matrix Decision Tree 

Recall Decision Tree 

The following are the recall values for the Decision Tree, which differ from the accuracy values using the 
same formula. 

 

 

 

Figure 7. Result Recall Confusion Matrix Decision Tree 

Performance Vector Decision Tree (DT) 

The values for the performance of the vector decision tree, as mentioned before, are as follows: an accuracy 
of 66.67% +/- 2.13% (micro average: 66.87%). The available metrics include confusion matrix values, 
precision, recall, optimistic AUC values, and pessimistic AUC. 
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Figure 8. Performance Vector Decision Tree 

Graph Tree Decision Tree (DT)  

The graph below illustrates a tree diagram that starts with the September payment, which is determined by 
the background education being greater than 5,500. The condition "education ≤ 5,500" is associated with 
the explanation provided in the tree diagram graph. 

 

 

 

 

 

 

 

 

 

Figure 9. Tree Diagram Decision Tree 

Description Tree Diagram Decision Tree 

Explanation of the tree diagram illustrating the variables associated with the initial payment commencing 
in September 2005. 
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Figure 10. Description Tree Diagram Decision Tree 

Accuracy Performance Vector Logistic Regression (LR) 

The confusion matrix of the logistic regression algorithm can be evaluated using the following metrics: 
accuracy, precision, and recall. 

 

 

 

Figure 11. Accuracy Performance Vector Logistic Regression  

Results Confusion Matrix Logistic Regression 

Accuracy = 
4.672+4.304

4.672+2.332+4.304+1.964 
 = 

8.976

13.272
 = 0.6756 x 100% = 67.56% 

Class Precision = 
4.672

4.672+2.332
 = 

4.672

7.004
 = 0.6670 x 100% = 66.70%    

or 
4.304

 4.304+1.964
 = 

4.304

6.268
 = 0.6866 x 100% = 68.66% 

Class Recall = 
4.672

4.672+1.964
 = 

4.672

6.636
 = 0.7040x 100% = 70.40% 

or 
4.304

4.304+2.332 
 = 

4.304

6.636
 = 0.6485x 100% = 64.85% 

Precision Performance Vector Logistic Regression (LR) 

The logistic regression algorithm's precision calculation has been previously explained. Here are the 
precision values obtained using the RapidMiner Studio tool. 
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Figure 12. Precision Performance Vector Logistic Regression 

Recall Performance Vector Logistic Regression (LR) 

The recall calculation in the logistic regression approach has been explained previously. Here are the recall 
outcomes obtained using the RapidMiner Studio tool. 

 

 

 

Figure 13. Recall Performance Vector Logistic Regression 

Performance Vector Logistic Regression 

The following description provides an overview of the performance of vector logistic regression, which 
achieved an accuracy level of 67.63% +/- 0.93% (micro average: 67.63%). Additionally, it includes the 
process of determining the confusion matrix value using the aforementioned formula. 

 

 

 

 

 

 

 

Figure 14. Performance Vector Logistic Regression 

Logistic Regression Model 

Presented below is a regression table with characteristics, coefficients, standard coefficients, standard error, 
z-values, and p-values. 
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Figure 15. Logistic Regression Model 

Accuracy Performance Vector Naïve Bayes (NB) 

The accuracy value derived from Naïve Bayes modeling can be characterized as follows: 

 

 

 

 

Figure 16. Accuracy Performance Vector Naïve Bayes 

Results Confusion Matrix Naïve Bayes 

Accuracy = 
2.534+5.553

2.534+1.083+5.553+4.102 
 = 

8.087

13.272
 = 0.6093 x 100% =60.93 % 

Class Precision = 
2.534

2.534+1.083
 = 

2.534

3.617
 = 0.7005 x 100% = 70.05%    

or 
5.553

 5.553+4.102
 = 

5.553

6.636
 =0.8367 x 100% = 83.67% 

Class Recall = 
2.534

2.534+4.102
 = 

2.534

6.636
 = 0.3818 x 100% = 38.18% 

or 
5.553

5.553+1.083 
 = 

5.553

6.636
 = 0.8367 x 100% = 83.67% 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v3i7.4471


Journal of Ecohumanism 

 2024 
Volume: 3, No: 7, pp. 3386 – 3418 

ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 
https://ecohumanism.co.uk/joe/ecohumanism  

DOI: https://doi.org/10.62754/joe.v3i7.4471  

3401 

 

Precision Performance Vector Naïve Bayes (NB) 

The precision value derived from the naïve Bayes algorithm is given by the formula shown above: 

 

 

 

Figure 17. Precicison Performance Vector Naïve Bayes 

Recall Performance Vector Naïve Bayes (NB) 

The formula above describes the recall value produced using Naïve Bayes: 

 

 

 

 

Figure 18. Recall Performance Vector Naïve Bayes 

Performance Vector Performance Naïve Bayes (NB) 

The vector performance results are provided here, including accuracy, precision, and recall numbers: 

 

 

 

 

 

 

 

Figure 19. Performance Vector Performance Naïve Bayes 

Accuracy Performance Vector Random Forest (RF) 

The accuracy value derived from Random Forest (RF) modeling can be characterized as follows: 

 

 

 

Figure 20. Accuracy Performance Vector Performance Random Forest 
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Results Confusion Matrix Random Forest 

Accuracy = 
5.957+3.230

5.957+3.406+3.230+679 
 = 

9.187

13.272
 = 0.6922 x 100% =69.22% 

Class Precision = 
5.957

5.957+3.406
 = 

5.957

9.363
 = 0.6362 x 100% = 63.62%    

or 
3.230

3.230+679
 = 

3.230

3.909
 =0.8262 x 100% = 82.62% 

Class Recall = 
5.957

5.957+679
 = 

5.957

6.636
 = 0.8976 x 100% = 89.76% 

or 
3.230

3.230+3.406 
 = 

3.230

6.636
 = 0.4867 x 100% =48.67 % 

Precision Performance Vector Random Forest (RF) 

The precision value derived from Random Forest (RF) modeling can be characterized as follows: 

 

 

 

 

Figure 21. Precision Performance Vector Performance Random Forest 

Recall Performance Vector Random Forest (RF) 

The recall value produced from Random Forest modeling can be defined as: 

 

 

 

 

Figure 22. Recall Performance Vector Performance Random Forest 

Performance Vector Random Forest 

The performance metrics of the vector random forest model are as follows: accuracy, precision, and recall 
values. 
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Figure 23. Performance Vector Random Forest 

Graph Model Random Forest 

The graphic model of the random forest method is depicted as follows, commencing with the payments in 
September 2005 and subsequently incorporating the education and age data. 

 

 

 

 

 

 

 

 

Figure 24. Graph Model Random Forest 

Description Random Forest Model (Random Forest) 

This text describes the tree graph used in the Random Forest (RF) algorithm, specifically focussing on the 
concepts of True Positive, False Positive, True Negative, and False Negative. 

 

 

 

 

 

 

 

 

Figure 25. Description Model Random Forest 

Accuracy Performance Vector K-Nearest Neighbor Classifier (KNN) 

The accuracy value derived from K-NN modeling can be characterized as follows: 
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Figure 26. Accuracy Performance Vector K-Nearest Neighbor Classifier 

Results Confusion Matrix K-Nearest Neighbor Classifier 

Accuracy = 
3.859 +4.042

3.859 + 2.594 + 4.042 + 2.777
 = 

7.901

13.272
 =  0.5953 x 100% = 59.53% 

Class Precision = 
3.859

3.859 +2.954
 = 

3.859

6.813
 = 0.5664 x 100% = 56.64%     

or 
4.042

4.042 + 2.777
 = 

4.042

6.819
 = 0.5927 x 100% = 59.27 % 

Class Recall = 
3.859

3.859 +2.777
 = 

3.859

6.636
 = 0.5815 x 100% = 58.15% 

or 
4.042

4.042 + 2.594 
 = 

4.042

6.636
 = 0.6091 x 100% = 60.91% 

Precision Performance Vector K-Nearest Neighbor Classifier (KNN) 

The precision value derived from K-NN modeling can be characterized as follows: 

 

 

 

Figure 27. Precision Performance Vector K-Nearest Neighbor Classifier 

Recall Performance Vector K-Nearest Neighbor Classifier (KNN) 

The recall value derived from K-NN modelling can be defined as: 

 

 

 

Figure 28. Recall Performance Vector K-Nearest Neighbor Classifier 

K-Nearest Neighbor Classification 

The K-Nearest Neighbor classification algorithm can be defined as follows: 

 

 

 

Figure 29. K-Nearest Neighbor Classifier Classification 
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Accuracy Performance Vector Neural Net (NN) 

The accuracy value derived from Neural Net (NN) modeling can be defined as follows: 

 

 

 

Figure 30. Accuracy Performance Vector Neural Net 

Results Confusion Matrix Neural Net 

Accuracy = 
5.259 +4.032

5.259 + 2.604 + 4.032 + 1.377
 = 

9.291

13.271
 =  0.70000 x 100% = 70.00% 

Class Precision = 
5.259

5.259 + 2.604
 = 

5.259

7.863
 = 0.6688 x 100% = 66.88 %     

or 
4.032

 4.032 + 1.377 
 = 

4.032

5.409
 = 0.7454 x 100% = 74.54 % 

Class Recall = 
5.259

 5.259 + 1.377
 = 

5.259

6.636
 = 0.7924 x 100% = 79.24% 

or 
4.032

 4.032 + 2.604  
 = 

4.032

6.636
 = 0.6075 x 100% = 60.75% 

Precision Performance Vector Neural Net (NN) 

The precision value derived from neural network modeling can be characterized as follows: 

 

 

 

 

Figure 31. Precision Performance Vector Neural Net 

Recall Performance Vector Neural Net (NN) 

The recall value derived from neural network modeling can be defined as follows:  

 

 

 

 

Figure 32.  Recall Performance Vector Neural Net 

 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v3i7.4471


Journal of Ecohumanism 

 2024 
Volume: 3, No: 7, pp. 3386 – 3418 

ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 
https://ecohumanism.co.uk/joe/ecohumanism  

DOI: https://doi.org/10.62754/joe.v3i7.4471  

3406 

 

Performance Vector Neural Net 

The vector neural net performance is characterized by accuracy, precision, and recall values, which are 
outlined below: 

 

 

 

 

 

 

 

Figure 33. Performance Vector Neural Net 

Improved Neural Net 

The graph below illustrates the interconnections between the input, hidden 1, and output layers. 
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Figure 34. Performance Vector Neural Net

Input Hidden 1 Output 
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Improved Neural Net 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Improved Neural Net

1 

2 

https://ecohumanism.co.uk/joe/ecohumanism
https://doi.org/10.62754/joe.v3i7.4471


Journal of Ecohumanism 

 2024 
Volume: 3, No: 7, pp. 3386 – 3418 

ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) 
https://ecohumanism.co.uk/joe/ecohumanism  

DOI: https://doi.org/10.62754/joe.v3i7.4471  

3409 

 

Performance Vector Support Vector Machine (SVM) 

The accuracy value derived from Support Vector Machine (SVM) modeling can be characterized as follows: 

 

 

 

Figure 36. Accuracy Performance Vector Neural Net 

Results accuracy Support Vector Machine (SVM) 

Accuracy = 
5.426 + 3.646 

 5.426 + 2.990 + 3.646 + 1.210 
 = 

9.072

13.272
 =   0.6835 x 100% = 68.35% 

Class Precision = 
5.426

 5.426 + 2.990
 = 

5.426

8.416
 =  0.6447 x 100% =64.47%     

or 
3.646

3.646 + 1.210 
 = 

3.646

4.856
 =  0.7508 x 100% = 75.08% 

Class Recall = 
5.426

 5.426 + 1.210
 = 

5.426

6.636
 = 0.8176 x 100% = 81,76% 

or 
3.646

  3.646 + 2.990 
 = 

3.646

6.636
 =  0.5494 x 100% = 54.94% 

Precision Performance Support Vector Machine (SVM) 

The precision value derived from Support Vector Machine (SVM) modeling can be characterized as follows: 

 

 

 

                   Figure 37. Precision Performance Support Vector Machine 

Recall Performance Support Vector Machine (SVM) 

The recall value derived from Support Vector Machine (SVM) modeling can be defined as follows: 

 

 

 

Figure 38. Recall Performance Support Vector Machine 

Kernel Model Support Vector Machine (SVM) 

The kernel model of the Support Vector Machine (SVM) derived from modeling can be characterized by 
the following parameters: the total number of Support Vectors is 13272, and the bias (offset) is -0.180. 
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Figure 39. Kernel Model Support Vector Machine (SVM) 

Weight Table Support Vector Machine (SVM) 

The Weight Table value derived from Support Vector Machine (SVM) modeling can be characterized as 
follows: 

Table 2. Kernel Model Support Vector Machine (SVM) 
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Weight Visualizations Support Vector Machine (SVM) 

The Weight Visualisations value derived from Support Vector Machine (SVM) modelling can be 
represented in a graph as follows: 

 

 

 

 

 

 

 

 

 

Figure 40. Weight Visualizations Support Vector Machine (SVM) 

Support Vector Visualizations Support Vector Machine (SVM) 

The Weight Visualization value derived by Support Vector Machine (SVM) modeling can be represented 
in a graph as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Weight Visualizations Support Vector Machine (SVM) 
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Receiver Operating Characteristic (ROC) Curve Downsampling 

The ROC graph presented below illustrates the accuracy calculation of each algorithm. Based on the 
research findings, the Downsampling algorithm with the highest performance is Decision Tree (DT), 
followed by Random Forest (RF) in second place. Deep Learning (DL) ranks third, Neural Net (NN) 
fourth, Naive Bayes (NB) fifth, Logistic Regression (LR) sixth, Support Vector Machine (SVM) seventh, 
and K-Nearest Neighbor Classifier (K-NN) last. 

 

 

 

 

 

 

 

 

 

 

Figure 42. Receiver Operating Characteristic (ROC) Curve Downsampling 

Performance Vector Deep learning (DL) 

The accuracy value derived from Deep Learning (DL) modeling can be defined as: 

 

 

 

 

Figure 43. Accuracy Performance Vector Deep Learning (DL) 

Results Accuracy Deep Learning (DL) 

Accuracy = 
3.696 + 5.299 

  3.696 + 1.337 + 5.299 + 2.940 
 = 

8.995

13.272
 = 0.677x 100% = 67.77% 

Class Precision = 
3.696

  3.696 + 1.337
 = 

3.696

5.033
 =   0.7343 x 100% = 73.43%     

or 
5.299

 5.299 + 2.940  
 = 

5.299

8.239
 = 0.6431 x 100% = 64.31% 

Class Recall = 
3.696

  3.696 + 2.940 
 = 

3.696

6.636
 =  0.5569 x 100% = 55.69% 
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or 
5.299

   5.299 + 1.337
 = 

5.299

6.636
 = 0.7985 x 100% = 79.85% 

Precision Performance Deep Learning (DL) 

The precision value derived from Deep Learning (DL) modelling can be characterised as follows: 

 

 

 

Figure 44. Precision Performance Vector Deep Learning (DL) 

Recall Performance Deep Learning (DL) 

The recall value derived from Deep Learning (DL) modeling can be defined as: 

 

 

 

Figure 45. Recall Performance Vector Deep Learning (DL) 

Performance Vector Deep Learning (DL) 

The Deep Learning vector performance is presented here, including accuracy, precision, and recall values. 

 

 

 

 

 

 

 

 

 Figure 46. Performance Vector Deep Learning (DL) 

Imbalance 

This paper discusses the concept of class distribution imbalance in a dataset, where one class (majority 
class) greatly surpasses another class (minority class). This imbalance is commonly observed in real-world 
applications, where the minority class, usually the positive class, is much smaller in proportion compared 
to the majority class. This poses challenges in achieving accurate classification [43].  
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This paper discusses the concept of imbalance, which refers to situations where datasets have significantly 
unequal class distributions. Imbalance is a common problem in various fields, including telecommunication 
management, bioinformatics, fraud detection, and medical diagnosis. It poses a significant challenge in data 
mining and pattern recognition, as it can hinder the learning process for machine learning algorithms [44].  

This paper discusses the concept of skewed class distribution in classification tasks, when one class is much 
more prevalent than the other class in the dataset [45]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. Process Imbalance Using RapidMiner Studio 

Tree Graph Decision Tree (DT) Imbalance 

The tree graph is characterized by the interdependence of initial payments, as exemplified by the Decision 
Tree (DT) graph provided below: 

 

 

 

 

 

 

 

 

 

Figure 48. Tree Graph Decision Tree (DT) 
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Performance Vector Decision Tree (DT) 

The accuracy value derived from Decision Tree (DT) modeling can be characterized as follows: 

 

 

 

 

Figure 49. Accuracy Performance Vector Decision Tree (DT) 

Results Accuracy Decision Tree (DT) 

Accuracy = 
 22.298 + 2.274  

   22.298 + 4.362 + 2.274 + 1.066  
 = 

24.572

30.000
 = 0.8190 x 100% = 81.90% 

Class Precision = 
22.298

  22.298 + 4.362 
 = 

22.298

26.660
 = 0.8363 x 100% = 83.63 %     

or 
2.274

  2.274 + 1.066 
 = 

2.274

3.340
 = 0.6808 x 100% = 68.08% 

Class Recall = 
22.298

  22.298 +1.066  
 = 

22.298

23.364
 = 0.9543 x 100% = 95.43% 

or 
2.274

   2.274 + 4.362
 = 

2.274

6.636
 = 0.3426 x 100% = 34.26% 

 

Precision Performance Decision Tree (DT) 

The precision value derived from Decision Tree (DT) modeling can be characterized as follows: 

 

 

 

Figure 50. Precision Performance Vector Decision Tree (DT) 

Recall Performance Decision Tree (DT) 

The recall value derived from Decision Tree (DT) modeling can be defined as follows: 

 

 

 

Figure 51. Recall Performance Vector Decision Tree (DT) 
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Performance Vector Decision Tree (DT) 

The performance metrics of the Decision Tree model, including accuracy, precision, and recall values, are 
outlined below: 

 

 

 

 

 

 

 

  

Figure 52. Performance Vector Decision Tree (DT) 

Simple Charts Distributions Naive Bayes (NB) 

The graph illustrates the distribution of the Naive Bayes algorithm for imbalance, showcasing the true and 
false values in the following diagram. 

 

 

 

 

 

 

 

 

 

 

Figure 53. Simple Charts Distribution Decision Tree (DT) 
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Conclusion 

This research employs four machine learning algorithms, as previously mentioned [6][51]: Imbalance 
Technique, Downsampling Technique, Weighting Technique, SMOTE Technique. The study used eight 
algorithms K-Nearest Neighbor (KNN), Logistic Regression (LR), Naïve Bayesian Classifier (NB), Random 
Forest (RF), Decision Tree (DT), Neural Net (NN), Deep learning (DL), Support Vector Machine (SVM).  

Imbalance technique for Decision Tree (DT) algorithm with accuracy level value of 81.91% with AUC 
value of 0.937 and Naive Bayes Classifier (NB) value with accuracy level value of 71.43% and AUC value 
of 0.737.  Downsampling technique for Decision Tree (DT) algorithm with accuracy level value of 
66.87% with AUC value of 0.953, Logistic Regression (LR) algorithm with accuracy level value of 67.63% 
with AUC value of 0.729, Naive Bayes Classifier (NB) algorithm with accuracy level value of 60.93% with 
AUC value of 0.740, Random Forest (RF) algorithm with accuracy level value of 69.22% with AUC value 
of 0.811, K-Nearest Neighbor (KNN) algorithm with accuracy level value of 59.53% with AUC value of 
0.627, Neural Net (NN) algorithm with accuracy level value of 70.00% with AUC value of 0.767, Support 
Vector Machine (SVM) algorithm with accuracy level value of 68.35% with AUC value of 0.727, Deep 
Learning (DL) algorithm with accuracy level value of 67.77% with AUC value of 0.777. Weighting technique 
for the Naive Bayes Classifier (NB) algorithm with an accuracy level value of 60.56% with an AUC value 
of 0.736, the Decision Tree (DT) algorithm with an accuracy level value of 64.31% with an AUC value of 
0.956.  

The SMOTE technique for the Decision Tree (DT) algorithm with an accuracy level value of 68.15% with 
an AUC value of 0.945, the Naive Bayes Classifier (NB) algorithm with an accuracy level value of 58.42% 
with an AUC value of 0.740. 
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