Overall Study in Image Classification Techniques

Saja Hikmat Dawood¹

Abstract

The era in which we live has become the era of big data, particularly with the spread of the concept of Internet-of-Things (IoT) and artificial-intelligence (AI). Images constitute a large portion of this data that is created and handled. Image classification is the process of identifying and labeling groups of pixels or vectors inside an image using certain criteria. Major image classification te chniques divided into two categories which are supervised and unsupervised techniques. This study looks at various research, techniques, and issues of image classification. The focus is on summarizing the main advanced classification strategies and methods such as (K-Mean clustering, Fuzzy measure, Artificial Neural Networks (ANN), Decision-Tree (DT), Support-Vector-Machines (SVMs), Naive Bayes (NB), K-Nearest-Neighbor (KNN), Random-Forest (RF), etc.) that can be utilized after some update to enhance classification accuracy. Also, this study shows the common challenges and solutions in this area.

Keywords: Image Classification, Artificial Neural Networks (ANN), Conventional Machine Learning Techniques, Deep neural networks (DNNs) Techniques.

Introduction

Although classifying objects is a simple process for human eyes and brains [1], machines find it difficult to do so. In computer vision, image classification is a crucial process. It is the process of grouping images according to predefined categories that correspond to their visual content. A significant aspect of machine learning is classification of images [2].

Pre-processing, object detection, segmentation, feature extraction and classification are all included in the image classification process. The Image Classification system is consisting of a database containing pre-set patterns that are used to identify which category an object belongs to. In many application fields, such as industrial visual inspection, robotic navigation, biomedical imaging, video surveillance, biometry, remote sensing, and vehicle navigation, etc. image classification is an essential and difficult problem. The phases in the classification approaches are shown in Fig. 1 [3]

The core objective of image classification is the precise identification of the characteristics that are present in an image. Both supervised and unsupervised classifications are used in image classification. in supervised classification, both human involvement and a trained database are employed. Since unsupervised classification is entirely computer-operated, no human involvement is necessary at all [4].

The supervised classification techniques which is also known as conventional machine-learning techniques like: support-vector-machine (SVM), Random-Forest, K-Nearest-Neighbour (KNN) Classifiers [2].

While the unsupervised classification which is also known as a deep-neural-network like: Convolutional-neural-network (CNN); it is also known as ConvNets [5].

This study aims to provide light on the state of art in image classification techniques generally, highlighting their significance, range of applications, and developing techniques. It aims to contribute to the greater knowledge and development of image classification systems across multiple domains by clarifying the principles and recent developments in this subject.

¹ Department of Computer Science, Collage of Basic Education, University of Mustansiriyah, Baghdad, Iraq, Email: saja2018ss@uomustansiriyah.edu.iq.

The paper is structure as follows: Section II, discusses the main phases involved in image processing and image classification. Section III, explain the different image classification techniques and give a literature review for these techniques. Section IV, the Performance Metrics that was utilized for Evaluation of classification techniques. In section V, some of the common Challenges and proposed solutions for these challenges. finally.

section VI, provides the conclusion from the related works.

Main Phases Involved in Image Processing and Image Classification

Figure 1: (a) Main phases in image processing [6], (b) Main steps in image classification [3]

As shown in figure 1(a). image processing includes the following phases:

Image Acquisition

It is the initial step that is carried. The difficulty of retrieving a digital image from a physical source is a crude demonstration of this. Digital cameras or other comparable devices are utilized to capture the images used in the processes mentioned [6]. Each strategy proves more appropriate in certain situations and less so in others, based on the associated benefits and drawbacks [7].

Pre-processing

The practice of improving captured image quality by altering its input image's features and handling with unwanted artifacts is known as image pre-processing. Image enhancement or Image restoration are the terms used to describe this phase. Noise and blurring reduction, converting RGB images to greyscale or HIS images, and other processes are done to improve the quality of the input image. This stage plays a crucial role and affects the classification process as a whole [6] [7].

The practice of improving captured image quality by altering its input image's features and handling with unwanted artifacts is known as image pre-processing. Image enhancement or Image restoration are the terms used to describe this phase. Noise and blurring reduction, converting RGB images to greyscale or HIS images, and other processes are done to improve the quality of the input image. This stage plays a crucial role and affects the classification process as a whole [7].

Image Segmentation

Image segmentation is part of picture analysis process, that divides the digital picture into many parts and extracting relevant areas (also called areas of interest) for additional analysis [6].

There are different techniques for image segmentation such as: -

Region based segmentation

This method combines regions growing, clustering, splitting and merging.

- Region Growing include grouping images into sub-regions, but this technique has noise sensitivity and computationally intensive.
- Region Splitting and Merging include partition images into sub-regions, then each sub-region undergoes a merging and/or splitting process in accordance with predetermined segmentation criteria, but this technique is sophisticated and highly compositional.
- These techniques are not appropriate for pictures with shadows or shading and require more complicated computing [8].

Threshold Based Segmentation

This method divides an image into subregions based on variations in gray scale values and can extract foreground objects from the background. It converts gray-level images into binary images, reducing the complexity of data and simplifying recognition. However, it is noise- sensitive, lacks spatial information, and increases computational complexity with larger images. Otsu technique use this method [8].

Edge Based Segmentation

This method involves locating the image's edges on its gradient in order to determine the objects' boundaries. This method uses first order-derivative/gradient operators, second-derivative operators, and optimal-edge detectors.

- First order derivative detects edges when intensity level discontinuity occurs. Edges can be identified using Roberts, Sobel and Prewitt operators that calculate the magnitude of the first derivative.
- Second derivative operators detect edges whenever the lighter side becomes negative and the darker side becomes positive. It is very susceptible to noise. Laplacian operator and the Difference of Gaussian (DoG) are second derivative operators, which looks for zero-crossings to locate edges.
- The optimal edge detector generates noise-resistant, continuous edges. Strong and weak edges can also be detected by it. Canny edge detector is the optimal one.

The edge-based segmentation is weak due to missing and disjointed edges, noise sensitivity, and sensitivity to expanding edges between important regions [8].

Clustering

Clustering is a method of organizing data into groups called clusters, with each cluster containing data more similar to others. Clusters are formed based on a number of attributes, such as size, color and texture. clusters can found in two types: hierarchical and partition. Such examples for this method are [8]:-

• K-mean Clustering

The K-means method is used to group picture pixels according to similarity characteristics such as color, distance, and intensity. Clustering allows big data points to be quickly, easily, and efficiently grouped. Its drawbacks include noise sensitivity, a restricted number of cluster selections, and inconsistent results resulting from varying starting centroids and more shows in [8].

• Fuzzy Clustering/ Fuzzy C-Means (FCM)

This technique is also known as soft clustering, it allows each data point to be a part of several clusters [9].

Artificial Neural Network (ANN)

ANN is a learning strategy used in decision making, particularly in medical images segmentation. It's employed to distinguish a given image from its backdrop, with connected nodes having specific weights [9].

There are also other methods for the segmentation process, but the common methods for segmentation were reviewed above

Feature Extraction

Features are characteristics of an object in an image that distinguish it from others. Feature extraction is crucial for entity recognition, as they describe the object. Data structures are used to represent the object's extracted characteristics. Examples of characteristics include color, morphology, edges, and texture, which can be useful in detection.

In order to generate a meaningful data structure, the grey level co-occurrence matrix approach uses pixel values as indexes to construct a matrix. It then looks for repeated pixel values and matches them with index values [6].

Image Classification

Classification identifies unknown objects by comparing them with recorded patterns, If the comparison is successful, the unidentified object is found [6].

Image classification includes the following steps as shown in figure 1 (b):

- The first and second steps (Image Acquisition and Pre-processing) are as shown above in image processing section.
- Detection and extraction: object detection involves perceiving the location and other characteristics of an object. while features extraction, an approximation of the object's path in the picture plane is obtained from the detected object.
- Training: choosing the exacting quality that portrayed the pattern properly [10].

Image Classification Techniques and Literature Review

One of the crucial and intricate steps in image processing is image classification. There are several techniques for classifying images as shown in Figure 2. Supervised-and-unsupervised-classification are the two primary techniques for classifying images.

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) <u>https://ecohumanism.co.uk/joe/ecohumanism</u> DOI: <u>https://doi.org/10.62754/joe.v3i4.3773</u>

Figure 2. Supervised and Unsupervised Classification [10]

Supervised-Classification

Certain pixels are thought to be grouped & provide the class labels in supervised classification. We refer to this procedure as training. Subsequently, the classifier use trained pixels to categorize more pictures. Before the testing procedure can begin, some information must be gathered by the analyst. For every informative class, the analyst finds sample training sites in this way, and the program also creates decision limits. Maximum likelihood, minimal distance to mean, and parallelepiped are popular supervised classification techniques. In supervised categorization, the following stages are involved:

- Each informative class's training areas are determined by the analyst.
- Signatures indicate (covariance, variance, mean, etc.)
- Every pixel has a classification.
- Map Informational Class [3].

Figure 3: Steps In Supervised Classification [10]

Unsupervised Classification

Pixels are grouped using their attributes in an unsupervised manner. Groups are referred to as clusters and this process is called clustering. The user chooses how many clusters he wants in this case. Whenever there are no training pixels available, the unsupervised classification method is employed. The process of

unsupervised categorization does not require prior knowledge. It is entirely automated, therefore no human annotation is needed. This method both finds and labels data clusters for analysts. Unsupervised classification involves the following steps:

- Clustering data
- Classifying all pixels based on clusters.
- Spectral classes Map.
- Analysts labeled the clusters.
- Map informative class [3]

Figure 4: Steps in Unsupervised Classification [10]

Below is illustration of different methods that have been used in image classification: -

K-means Clustering

It is type of Unsupervised Classification. The steps involve in this algorithm are: -

Step 1: - starts by computing the number of clusters (k).

Step 2: - suppose the cluster center (centroid). Any object/ item at step random can serve as the first centroid.

Step 3: - repeat the three phases listed below until this method reach convergence (a steady state).

- Find the coordinates of the centroids.
- Calculate the distance between each item and the centroids.
- group the items according to the shortest distance [11].

Figure 5: K-mean algorithm [11]

Fuzzy Measure

Different stochastic connections are found in fuzzy classification to characterize an image's attributes. The several forms of stochastic are combined to provide a collection of qualities, some of which are fuzzy in nature. It offers the chance to give comparable descriptions of several kinds of stochastic features. The fuzzy integral and threshold choices determine performance and accuracy [3].

Artificial Neural Network (ANN)

ANN is a kind of artificial-intelligence which uses a series of layers, each with a collection of neurons connected via weighted interconnections, to store experience knowledge each artificial neuron produces an outcome using a specific activation-function like (Gaussian, piecewise-sigmoid, linear, etc.), after computing the weighted total of its incoming signals. The general structure of artificial neuron is illustrated in (Figure 6). The amount of nodes in input layer equals to the dimensions of every pixel, while number of nodes in output layer equals to the amount of classes information.

Figure 6: General Structure of Artificial Neuron [12]

There are basically three categorize of ANN as shown in (Figure 7) and the different types under each category.

The 1st one is feed-forward-neural-network (FFNN) with back propagation learning which are frequently employed to adjust connection weights from training data using the error difference that exists between the intended and the produced output. training process is completed when the error is lower than a certain threshold. The classifier then employed to perfrom the classification after receiving all of the testing data

[3]. FFNN is simple network with a forward-oriented connection pattern, allowing data to flow from input to hidden layers and output. There are no loops in the data flow's pathways.

The 2nd one is recurrent neural network (RNNs) allow loops inside the cells provide feedback on computation failures by referencing the target values. The weights of the related inputs are updated with the assistance of error feedback [13].

The 3rd one is Deep-neural-networks (DNNs) are the process of employing a neural-network that has been trained on enormous quantities of data to categorize, cluster, and predict objects. Such as convolutional networks that extract features from large amounts of data, such as patterns, textures, edges, and brightness, which are reusable for various image processing scenarios. The deep learning approach merges feature extraction and classification onto a single network, unlike to conventional image classification technique [14].

DNN can also classified into supervised and unsupervised.

The supervised deep neural network examples are: generative-adversarial-network (GAN), long-short-term-memory (LSTM), recurrent-neural-networks (RNNs), gated-recurrent-unit (GRU), convolutional-neural-networks (CNNs), etc.

The unsupervised deep neural network examples are: Deep Transfer Network (DTN), autoencoders (AE), Tensor Deep Stack Networks (TDSN), deep belief networks (DBN), etc [14].

Figure 7: ANN Categorization [13] [15]

Support-Vector-Machine (SVM)

SVM is a supervised-learning method. Its implicitly translate incoming feature vectors to space of higherdimensional using Gaussian width and kernel function [3]. Three primary kernel functions may be utilized with SVMs: polynomial, RBF, and linear [16].

As shown in (Figure 8), SVM is built upon a process that divides / classifies two classes: class-A & class-B. With a maximum width (margin), the ideal hyper-plane (separator) attempts to divide the two classes; Two

parallel-hyper-planes are formed in a symmetric on each side of hyper-plane which splits the data, taking use of margin between the two external-hyper-planes.

By minimizing the upper bound of the generalization error, SVMs seek to reduce the structural risk reducing attitude. SVM method attempts to identify a decision function which minimizes functional. They make it possible to use a small training set to train nonlinear classifiers in high-dimensional regions. Selecting a vector division, also known as the support vectors, that establishes the proper borders between the classes fit makes this feasible [3].

Figure 8: SVM Dividing Class A And Class B [10]

Decision-Tree (DT)

DT is a supervised-learning method. There are different types of decision tree such as (Decision Tree Classifiers, Pruning Decision Tree, Tree Boosting).

Decision tree classifiers are a non-parametric, hierarchical method used to classify data using a general set of features in a single decision step. They are increasingly important due to their simplicity, computational effectiveness, and ability to automatically choose features, providing easily interpretable information about classification's prognostic ability. The method involves dividing dataset into homogeneous groups and assigning class labels. Three steps make up this method: nodes dividing, locating terminal-nodes and assigning them a class label [3]. Figure 9. Showing how the root node which holds all of the data divided into split nodes and leaf nodes based on specific threshold (T) that specified according to the nature of the problem [10].

Pruning the decision tree and tree boosting can decrease classification mistakes when dealing with data that is not part of the training set. Pruning removes complex parts of the tree, while tree boosting iteratively generates multiple classifiers, reducing errors in weak learning algorithms. Decision tree classifiers offer an efficient classification approach [10].

Figure 9: Decision tree classifier [10]

Naive Bayes (NB)

Naive Bayes is a supervised-learning classifier constructed using Bayes theorem [17], assigning the class with the largest predicted probability to the feature vector. which is based on a probability representation. It requires a limited dataset for training, Also, it is easy of use and enables good performance, resistant to outliers, and has flexible decision boundaries, which prevents overtraining. However, it has poor performance for complex multiclass configurations [3].

Figure 10: Naive Bayes classifier [18]

K-Nearest-Neighbor(KNN)

Among the most well-liked supervised machine-learning-techniques is the k-nearest neighbors (KNN) algorithm. In order to forecast the new data points values, it employs "feature similarity," classifying them according to how closely they resemble the training set [17].

Figure 10. show how the K value have the influence in determining the class of the new data [19].

Figure 11: K-Nearest Neighbor [19]

Random Forest (RF)

RF is a supervised machine-learning-technique which generates many decision trees and aggregates them to get forecasts that are more precise and consistent. This approach yields consistently high-quality outcomes and is both versatile and easy to utilize. one of its main advantages is its effectiveness in solving regression and classification tasks [20].

This method's primary drawback is its computational complexity and poor performance when dealing with an extensive amount of trees, which makes it unsuitable for real-time operations [21].

2024

Figure 12: Random Forest [20]

Bagged Tree

A meta-algorithm called bagging is used to machine-learning-algorithms for statistical regression and classification to improve their accuracy and stability. By lowering the amount of observations, it reduces variance and guards against overfitting. Bagging allows categorization using several techniques while reducing the quantity of the data. the process involves Using a resampling technique called bootstrapping, samples are repeatedly taken from the original data and replaced. Then, each sample is trained in parallel using different methods, such SVM or Decision Trees. The average of each output is used to determine the aggregated output [22].

Figure 13: Bagged Tree

Logistic Regression (LR)

Methods for determining the relationship between a collection of predictor variables and a categorical response variable are implied by logistic regression. A function of means, which is a probability, is shown via logistic regression as a function of the exploratory variables. The legitimate transformation is involved in logistic regression [10].

Expectation Maximization (EM) Algorithm

EM is a repetitive process that fits finite mixture models to observable data. It approaches a local maximum in the marginal a posteriori probability function. EM is used to estimate features from missing or partial data sets; however, it is computationally costly. EM methods can be implemented using either multivariate or univariate normal distributions. Univariate EM employs a histogram, whereas multivariate EM employs randomizes and a 3D space vector starting parameters.

Journal of Ecohumanism Volume: 3, No: 4, pp. 2529 - 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) https://ecohumanism.co.uk/joe/ecohumanism DOI: https://doi.org/10.62754/joe.v3i4.3773 choose or E-step(Find M-step parameter at randomize an conditional k=k+1Updating classification initial posterior parameters probability) converged? parameter a iteration k=0

2024

Figure 13: EM Algorithm [11]

The EM algorithm applying two steps:

E-step (expectation): - calculates the conditional posteriori probability.

M-step (maximization): - updated the parameter estimation.

then estimate mean, covariance, and a priori probability for each cluster until convergence is attained [11].

Bayesian Classifier/ Maximum Likelihood

It uses probability theory to the categorization problem. A statistical decision rule assigns pixels to classes based on their probability function. The equation for Bayesian classifiers/ maximum likelihood is shown in ref [11].

Find the probability for each pixel in each class. Pixels are given to class with highest likelihood, and classification is conducted accordingly [11].

Different Image Classification Techniques are shown in TABLE 1.

TABLE 1. A Survey of Different Techniques with their Strengths and Weaknesses

Ref	year	Technique\ Methodology	Domain\ Data set	pros	Cons	Performance Measurement tools	Future work
[11]	2011	Neural Network (NN), K- means algorithm, EM (univariate and multivariate distribution) algorithm, Maximum likelihood classifier	Two images (2. Simple digital image, 1.SAR image)	 K-means has the shortest time of 1.82sec. Maximum likelihood classifiers and NN offer better accuracy and are useful for multiple databases. but NN has the highest accuracy of all methods. 	 EM (univariate normal distribution) has the worst accuracy. NN has the longest time. lacks to other evaluation metrics. Using limited data for evaluating. Doesn't discuss the parameters for each classification technique. 	Accuracy, time	-
[27]	2011	Independent- Component- Discriminant- Analysis (ICDA)	Four hyperspectral datasets (AVIRIS- Indian- pine, AVIRIS- Hekla, ROSIS, HYDICE- Washington)	 The suggested approach (ICDA) outperformed support vector machines (SVMs). ICDA Effective with high dimensional data and limited training samples. ICDA Computationally efficient for large training sets. Tested on multiple different datasets. 	 ICDA results varies depends on the number of independent components (IC) kept. ICDA Can have higher standard deviation and computationally demanding with small training sets. Does not naturally use spatial information. 	Accuracy, processing time	- Integrating spatial information into the ICDA. - Further investigation of ICA algorithms on classification performance.
[28]	2012	Artificial neural network (ANN) & Support vector machine	Roman numerals images of (322 matrixes)	- The precision rate of the proposed model is 86%. - Flexible in	- long Processing time for complex tasks.	Precision	- Optimizing processing time/ training time. - Enhance
		(SVM)		adjusting			model

						Journal of Eco	humanism
						Volume: 3. No: 4. pp. 2	2024 2529 – 2555
					ISSN: 2752-6798	(Print) ISSN 2752-680	01 (Online)
					https://eco	humanism.co.uk/joe/ec	ohumanism
				parameters for	- Long training	<u>s.//d01.01g/10.02/34/j0</u>	scalability to
				different	time for large		increase the
				classification	datasets		number of
				problems The	uatasets.		classos
				problems. The	- when		Develop
					mumbaraf		- Develop
				parameters.	alasson the		pleas relation
				- sumple to	classes, the		
				create and	whole model		to improve the
				implement for	needs to		precision.
				particular	redesign.		
				classification	- Limited		
				issues.	dataset.		
					- Lacks of		
					performance		
					comparison		
					with other		
					methods.		
					- Potential		
					overfitting due		
					to small dataset.		
[29]	2013	Euclidean	benchmark	- Divergence-	- The	Accuracy	- Improving
		distance and	Caltech dataset	FCM (D-FCM)	categorization is		feature
		divergence		achieved higher	limited to four		extraction
		distance for		classification	categories.		technique to
		Fuzzy c-Means		accuracy	- Confusion		discriminate
		(FCM)		(73.33%)	between		Motorbike
				compared to	motorbike and		data from
				standard-FCM	airplane data.		airplane data
				(44.61%) and	- Limited size		
				SOM (42.22%).	of dataset Uses		
				- D-FCM utilize	only 200 images		
				both mean and	per category.		
				variance	- lacks of other		
				information	evaluation		
				from image	metrics		
				blocks, while			
				standard FCM			
				just uses mean			
				information.			
				- Comparative			
				analysis with			
				conventional			
				algorithms			
[30]	2013	SVM	clear cell kidnev	- has good	- No	accuracy	-
r .1	-	-	carcinoma	classification	comparison		
			(KIRC) and	performance	with other		
			glioblastoma	(84% and 81%).	models.		
			multiforme	- evaluated fully	- Lack of		
			(GBM)	on two large	implementation		
			()	datasets (GBM	information		
				and KIRC) of	nnomauon.		
				1400 and 2500			
				samples.			
				P		1	1

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) https://ecohumanism.co.uk/joe/ecohumanism DOL https://chi.eog/10/0754/iceo/214/2772

				I	DOI: <u>https</u>	://doi.org/10.62754/jc	<u>e.v3i4.3773</u>
[31]	2014	Convolutional	Interstitial lung	- The	- Using limited	recall and	-
		neural network	disease (ILD)	customized	data for	precision	
		(CNN)	database	CNN approach	evaluating.		
				yielded best	- CNN		
				classification	generalizability		
				results.	to other		
				- addresses	medical images		
				overfitting	or texture		
				problem by	classification		
				using input	problems not		
				distortion and	widely		
				dropout.	validated.		
				- Visualization			
				of learned			
				features			
				- Detailed			
				information			
				about			
				implementation.			
[32]	2015	Rough-Fuzzy	biological image	- Efficient	- Limited	Error	- Testing on
		Artificial	(cut wood	elimination of	testing on a	(Training and	larger datasets.
		Neural	images)	features (19/4)	small dataset.	Testing error)	- Applying
		Network		with no	- Not explored		RFANN to
		(RFANN)		accuracy loss.	for other		other
				- Reduced the	applications.		classification
				computational	- Lack of		problems.
				complexity and	comparisons		- Reducing
				runtime by	with other		Dependence
				processing 21%	methods.		on Human
				only.	- requires some		Experts by
				- Reduced	expert for		only generating
				dependence on	generation of		membership
				human	inference rules.		function.
				specialists.			
				- shown good			
				generalization			
				abilities.			
[10]	2016	ANN, SVM,	brain tumor	- proposed	- it may not	Accuracy,	-
		Decision Tree,		RGSA	extensively	Classification	
		and Hybrid		algorithm show	address the	Rate	
		method of		better	scalability or		
		Refined		classification	generalizability		
		Gravity Search		accuracy, while	of the Hybrid		
		Algorithm		ANN, SVM,	RGSA and		
		(RGSA) and		and Decision	SVM to diverse		
		SVM		Tree show low	image datasets		
				accuracy across	or domains.		
				all datasets.			
[33]	2016	fuzzy	PASCAL Visual	- innovative	- Limited	Negative and	-
		classifiers and	Object Classes	strategy	dataset only 3	Positive	
		boosting	(VOC) dataset.	improves	object classes.	learning	
				classification	- lacks of	samples,	
				accuracy while	comparisons	accuracy on	
				reducing		testing set,	

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) https://ecohumanism.co.uk/joe/ecohumanism DOL https://chi.eog/10/0754/iceo/214/2772

		1	1		DOI: <u>https</u>	:://doi.org/10.62754/jc	e.v3i4.3773
				learning and	with other	Learning and	
				testing time by	methods.	Testing time	
				35 and 32%			
				respectively.			
				- Flexible			
				method that			
				allows adding			
				now object			
				ala assa har inst			
				classes by just			
				adding new			
				tuzzy rules.			
[34]	2017	principal	Three benchmark	- (k-means-	- limited	Overall and	- Accelerate
		component	image datasets	clustering +	comparison	average	system
		analysis (PCA)	(Hyperspectral	PCA + M-	(only one	Accuracy,	performance
		+ kmeans	image (HSI))	SVM) achieves	method).	Execution	by using
		clustering	0 ("	greater time of	- Not examined	Time	efficient
		algorithm +		execution and	on datasets that		methods for
		multi-class		classification	have multiple		HSI
		support-		accuracy than	classes		dimensionality
		vector-		typical PCA +	ciusses.		reduction and
		machina		M SVM			classification
		(MSVM)		tochnique			classification.
		$(113 \vee 11)$.		technique.			- appiying
				- performance is			approach on
				validated using			big HSI
				both			datasets with
				quantitative and			several classes.
				visual			
				classification			
				data.			
[1]	2017	Quadratic	200 images in 5	- Both SVM	- Limited	Accuracy	-
		SVM and	groups taken	classifiers	dataset.	(ACC)	
		Linear SVM.	from Caltech 256	trained by	- BoW did not		
		trained and	dataset	CNN. shown	perform well		
		tested using		verv high	with the 10-fold		
		Bag of Words		accuracy But	cross-validation		
		(BoW) and		Quadratic SVM	approach		
		(DOW) and		clightly	Where the		
		CNN		sugnuy			
		$(\Lambda 1_{\text{DD}} \times \Lambda 1_{\text{DD}})$		Linear SVM	accuracy		
		(Alexinet)		Linear SVM.	aroppea.		
				- CNN extract			
				teatures better			
				than BoW.			
[35]	2018	Convolutional	MNIST dataset	- this model	- demand more	LOSS, ACC,	- enhance
		Neural	of grayscale	achieves great	processing	VAL_LOSS,	model
		Network	images of	accuracy to	power.	VAL_ACC	accuracy by
		(CNN)	handwritten	98%.	- Doesn't deal		increasing
			digits		with color		layers and
			Ŭ		images		GPU cluster
					- Performance		input for
					on more		network
					complex		training
					datasets or real-		- classifying
					world images		colored images
					mode further		of largor sizes
					needs further		or larger sizes.

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) <u>https://ecohumanism.co.uk/joe/ecohumanism</u> DOI: <u>https://doi.org/10.62754/joev3i4.3773</u>

1			1	I	DOI: <u>https</u>	<u>s://doi.org/10.62/54/jc</u>	<u>be.v314.3773</u>
[27]	2010	Dave 1	TNT.(751	generalization.		
[30]	2018	Deep learning	ImageiNet	- The deep	- lacks of	-	-
			database	learning	evaluation		
				system's snow	metrics and		
				nign	comparisons		
				classification.	with other		
				accuracy even in	methods.		
				specific test	- lacks of		
				images.	discussion		
					about		
					parameters and		
					setup.		
[37]	2019	Deep CNN	dataset of chest	- using different	Limited size	Accuracy,	- stabilizing the
		(oriented fast	X-ray images	model of data	of dataset	Specifcity,	training
		and rotated		augmentation	which limiting	Recall	process
		binary (ORB)		and using	the		evaluating
		+ linear SVM,		another dataset	generalizability.		other powerful
		transfer		(OCT dataset)	- does not		CNN models
		learning with		to enhance	extensively		like ResNetv2.
		CNNs		performance.	compare the		- adding
		(VGG16,		- CNN with	performance of		visualization to
		InceptionV3),		transfer learning	capsule		improve
		and capsule		is the most	networks with		CNN-based
		networks)		effective of the	other methods.		systems results.
		,		three			
				approaches.			
				- capsule			
				network is			
				better than			
				SVM+ ORB.			
[7]	2019	SVM with	Ph ² database	- texture + color	- using small	Accuracy,	- Advanced
Γ.]		Linear kernel,		features vield	dataset.	sensitivity,	features and
		SVM with		better results	- there is no	correctness.	algorithms can
		RBF kernel		than color	image pre-	specificity.	enhance
		(SVM-RBF).		features only.	processing.	CPU time and	efficiency.
		Multiple		- multiple	- The dataset.	F-score.	- apps. BOTs.
		Instance		validation	methods and		medical
		Learning		approaches (5-	metrics used		solutions, and
		(MIL-RL)		fold. 10-fold.	doesn't		instructional
		()		leave-one-out	extensively		games might
				cross-	described and		be created for
				validation).	clarified.		various
				- Using real	- the study does		demographic
				plain	not extensively		classes
				photographs	compare with		ciuoseo.
				- Provides	other deep		
				extensive	learning		
				performance	algorithms		
				metrics	ung officiality.		
				- MIL-RL vields			
				higher regulte			
				- SVM-RRF is			
				quicker than			
				Juncher man		1	1

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) <u>https://ccohumanism.co.uk/joe/ecohumanism</u> DOI: <u>https://doi.org/10.62754/joev3i4.3773</u>

				linear- SVM and MIL-RL methods.			
[38]	2019	Deep-neural- network (DNN) & Tensorflow framework	3,600 flower images across 5 types	 achieved high accuracy, exceeding 90- 100%. Using of Large dataset of 3670 photos. Compares various model parameters. 	 The study is limited to only 5 types. Lacks comparability with other classification approaches. No cross- validation was stated. Computational needs are not stated. 	Accuracy	-
[39]	2020	SVM, KNN, Discriminant- Analysis (DA), Random- Forest (RF)	kaggle fruit image detection dataset	 Use real-world fruit images. Use different performance metrics. KNN classifier achieved highest accuracy (93%). 	 using small dataset which limit the generalizability. Limited to only three fruit types. Doesn't provide a comparison with deep learning techniques. "mixed fruit" images were not well handled. 	specificity, accuracy, sensitivity, Negative and Positive Predictive Value (NPV, PPV).	- Improve the proposed technique for real-time performance evaluation through training a network model using more mixed fruit pictures.
[40]	2020	SVM with Gaussian radial basis function (RBF) kernel	DICOM dataset of MRI brain tumor images.	 Achieved High accuracy (94.2% average). Outperforms other existing methods (PNN- and FCM). Using several performance measures for Evaluation. 	- Small dataset (750 samples from 30 images) which limiting the generalizability. - performs Only binary classification (normal vs. abnormal).	precision, recall and processing time	 Incorporating effective segmentation and classification models for real-time healthcare applications. analyzing tumor volume from MRI images using BioGPS and BraTS datasets.
[41]	2020	SVM and CNN	- Small dataset of 350+ noisy images of 5 different classes which have been	- using different data augmentation techniques for enhancement	 initially small dataset size. Does not discuss overfitting 	F1 score, Accuracy, Precision, Recall	-

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) <u>https://ecohumanism.co.uk/joe/ecohumanism</u> DOI: <u>https://doi.org/10.62754/joev3i4.3773</u>

	I		1.		1 1 UUI: <u>https</u>	://u01.org/10.62/54/j0	0e.V314.3//3
			processed to get	dataset size to	problem with		
			3000+ 1mages.	3000+ 1mages.	augmented		
				- the accuracy of	dataset. SVM		
				CNN increased	accuracy drop		
				by 93.57% from	from 93% to		
				that of SVM of	82% after using		
				82%.	data		
					augmentation.		
					- lacks of		
					discussion		
					about tuning		
					CNN		
					hyperparameter		
[2]	2020	K Nograat	Eastion MNIST	MI D achieved	Time	Time	modele
[4]	2020	K-incarest-	Data ant	- WILL achieved	- Tille		
		(KNINI)	Data set	the greatest	complexity may	accuracy, FI	accuracy may
		(KININ),		accuracy at	not be totally	score, recall,	be increased
		Random-		89.57%, RF at	tair. Were MLP	complexity	through
		Forest (RF)		89.2%, and	run for 100	and precision.	feeding
		and Multi-		KNN at	epochs while		features
		Layered-		85.87%.	other methods		extracted from
		Perceptron		- RF having the	are not.		image data.
		(MLP)		least time	- Specific details		- making a
				complexity at	on		comparison
				34.89 seconds,	hyperparameter		between
				KNN at 106.92	tuning and		CNN and
				seconds, and	implementation		MLP model.
				MLP at 521.78	are not		
				seconds per 100	extensively		
				epochs.	covered.		
					- focusing only		
					on classical		
					algorithms		
					missing other		
					advanced deen		
					loarning		
					methods		
[17]	2021	Naïno Banos &	dataset of 10	bost	Using of small	0.0011#0.011	Uandling
[1/]	2021	W magnest		- Dest	- Using Of Sinali	accuracy,	- Handing
		K-nearest-	blood	classification	dataset (only 10	serisitivity,	overlapping
		neignbor	(Ci-1-1 1)	$\frac{1}{00000000000000000000000000000000000$	$\frac{111}{11}$	specificity and	
			(SICKIE CEII	90.0/% With	- The study	precision	- Expanding
			anenna detection)	iowest	uoes not nandle		the dataset to
				computational	overlapping red		improve
				ume is achieved	blood cells with		generalizability.
				with hybrid mix	sickle cell		
				ot NICK's	anemic blood		
				thresholding	ımages.		
				and fuzzy C-	-		
				means with K-	Computational		
				nearest	requirements		
				neighbor	are not		
				classifier.	addressed.		
				- Comparison of	- Potential for		
				multiple	overfitting due		
				segmentation	to small dataset.		

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 798 (Print) | ISSN 2752-6801 (Online)

10.	amero, 1 (01 1, pp: 202) 2000
ISSN: 2752-6798 (Prin	nt) ISSN 2752-6801 (Online)
https://ecohuma	anism.co.uk/joe/ecohumanism
DOI: <u>https://d</u>	oi.org/10.62754/joe.v3i4.3773

1			l	1 1	DOI: <u>nups</u>	://doi.org/10.02/54/jc	00.1014.5775
				and			
				classification			
				methods.			
				- Using multiple			
				pertormance			
				measures for			
				Evaluation.			
[42]	2021	Convolutional-	-	- CNN	- Lacks of	-	-
		neural-		outperform	comprehensive		
		networks		DBNs in	experimental		
		(CNNs) vs		classification	results.		
		Deep-Belief-		accuracy.	- lacks of		
		Networks		- emphasizes	evaluation		
		(DBNs)		CNNs' better	metrics.		
				feature	- lacks of		
				extraction	discussion		
				canabilities	about		
				- Practical	narameters and		
				implications for	setup		
				real-world	- Limited		
				applications	information		
				applications.	about the		
					datasets		
	2021	Nr. 1.	2(00		utilized.	•,• •,	
[5]	2021	Machine-	2608	- utilize cross-	- specific	sensitivity,	-
		Learning: -	histopathological	validation for	dataset restrict	precision,	
		SVM, Naïve	images for neck	robust results.	generalizability	accuracy, area	
		Bayes, K-	and head cancer	- utilizing data	to other tasks.	under ROC	
		Nearest-		augmentation	- Study doesn't	curve (AUC)	
		Neighbor		techniques.	focuses on	and Specificity	
		(KNN),		- Evaluates	other deep		
		Discriminant-		using several	learning		
		Analysis (DA)		performance	models.		
		and Binary		metrics.	- Sole reliance		
		Decision Tree		- using AlexNet	on cross-		
		(BDT).		for feature	validation for		
		deep learning		extraction.	evaluation may		
		model: -		- SVM, KNN,	limit the		
		AlexNet		and DA are the	robustness of		
				most effective	the results.		
				techniques.	- Lack of		
				SVM and KNN	discussion on		
				achieved higher	computational		
				accuracy rate of	efficiency and		
				99.98% while	hypernarameter		
				DA BDT and	tuning		
				NB achieved	turing.		
				00 810/ 07 200/			
				22.01/0, 27.3270			
[20]	2022	M1-1-	alastus 1	ани 93.0070. т. стъл	£	Δ.σ	
[22]	2022	- Machine	(EMC) determined	- LSIM	- rocus on	Accuracy,	-
		Learning (ML)	(EMG) dataset	achieved highest	only four hand	Kecall,	
		classifiers: -	tor the	accuracy close	gestures, may	Precision and	
		SVM, Bagged-	classification of	to 99%,	restrict the	F1-Score.	
		tree Kandom-		XGBoost	results'		

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) https://ecohumanism.co.uk/joe/ecohumanism DOL https://chi.erg/10/0754/icsp214/2772

					DOI: <u>https</u>	://doi.org/10.62754/jo	<u>e.v3i4.3773</u>
		Forest, and Extreme- Gadient- Boosting (XGBoost). - Deep Learning classifier: - Long Short Term Memory	hand gestures	accuracy close to 97%. - Investigates the impact of removing noisy channels. - Evaluates models on several performance	DOI: https applicability to a larger range of gestures. - Lack of detailed exploration about removing noisy data channels, computing	://doi.org/10.62754/jc	<u>ex3i4.3773</u>
		(LSTM)		measures. - Performs	needs.		
				hyperparameter			
[12]	2022	ANN: Back-	cancer datasets	- BPNN + LM,	- lacks	MSE, ROC	-
[12]	2022	Propagation Neural Network (BPNN) supported by Levenberg- Marqurdte (LM) Activation Function		 BHAN + LM, showing high accuracy (97.3% matching). ROC curves show a perfect match between true and false positive rates. Using Different performance metrics for evaluation. 	discussion on the potential limitations or challenges of using proposed method. - further validation in datasets are needed to assess performance of suggested approach of classification. - Lacks of comparison against other machine learning approaches.	curves, confusion matrix	-
[18]	2023	Naïve-Bayes, Decision-Tree	"Lung Cancer Prediction"	- Naïve-Bayes and Decision-	- SVM show little bit lower	recall- weighted,	- suggesting further
		and SVM	dataset	Tree Classifiers performed comparably, showed high values in accuracy, precision, recall and F1. SVM also showed competitive performance - Include outlier analysis using Box plots.	performance in precision. - acknowledges limitations in dataset and models.	accuracy, precision- weighted and F1-weighted	assessment and thorough analysis are required for more accurate and consistent lung cancer prediction.

Journal of Ecohumanism 2024 Volume: 3, No: 4, pp. 2529 – 2555 ISSN: 2752-6798 (Print) | ISSN 2752-6801 (Online) <u>https://ecohumanism.co.uk/joe/ecohumanism</u> DOI: <u>https://doi.org/10.62754/joe.v3i4.3773</u>

	1 1			- Uses different	DOI: <u>nups</u>	://doi.org/10.02/54/jc	<u>0e.v314.3775</u>
				performance			
				metrics.			
[43]	2023	deen	Three datasets: -	- Compare 11	- Alex-Net	accuracy	- Building
[]	-0-0	convolutional	(NBAIR, Xie1,	different deep	ResNet.	training	Large Dataset
		neural	Xie2) of Insect	CNN.	GoogleLeNet.	duration, and	of pests and
		networks: -	and pest	- Testing done	VGG. and	storage	insects.
		AlexNet.	identification	on 3 different	Inceptionv3	requirements.	-Improve
		ResNet-101		datasets.	require large		insects
		VGG-19		- Evaluation	datasets, are		Segmentation
		ResNet-50		using different	computationally		from complex
		VGG-16.		performance	cumbersome.		background.
		InceptionV3.		metrics.	and not suitable		- Looking at
		MobileNetv2		- DenseNet 201	for mobile		more advanced
		SqueezeNet.		achieved	applications.		data
		GoogleNet,		greatest test	- lacks of		augmentation
		ShuffleNet		accuracy.	discussion		approaches.
		and		AlexNet is well	about		- Develop
		DenseNet201		in training time,	parameters for		models that
				smaller	each model.		recognize
				architectures	- Limited		insects at all
				may benefit	discussion		life stages.
				from	about the		
				ShuffleNet,	datasets		
				MobileNet and	utilized.		
				SqueezeNet. In			
				real-time mobile			
				and robotics			
				applications.			
[44]	2024	remote sensing	three remote	- RSMamba is	- Inadequate	Recall, F1-	- investigating
		image with	sensing datasets	Novel, efficient	theoretical	score and	RSMamba
		hardware-	(AID, NWPU-	architecture that	analysis.	Precision	efficacy in
		aware State	KESISC45 and	outperforms			other image
		Space Model	UC-Merced	modern			classification
		(SSM) KIOWII	Land-Use)	memous based			Develop and
		(RSMamba)		Transformer			- Develop and
		(KSiviainba)		hand and CNN			models using
				models across			RSMamba as
				different remote			backhone
				sensing datasets			Dackbolk.
				- adaptations for			
				2D image data			
				RSMamba has			
				potential to			
				serve as a			
				backbone for			
				future basis			
				models.			
[45]	2024	deep learning	BreakHis dataset	- The suggested	- Limited to	accuracy	- Optimize
		(DenseNet) +	of Breast Cancer	model increase	only Binary	,	model
		transfer	Image	classification	Classification		architecture to
		learning +	~	accuracy in	(Benign vs.		decrease size
		attention		comparison to	malignant),		

					Journal of Ecol	humanism 2024
				ISSN: 2752-6798	Volume: 3, No: 4, pp. 2 (Print) ISSN 2752-680	2529 – 2555)1 (Online)
				https://eco	humanism.co.uk/joe/eco	<u>ohumanism</u>
1	mechanisms		evicting	DOI: <u>https</u>	://doi.org/10.62/54/jo	and parameter
	(SE module)		methods	into account		
	(SL' IIIOd'die)		- Using of	cancer grades		- ensuring
			transfer learning	or subtroes		- cristing
				The proposed		interpretable
			training	- The proposed		models for
			officionary	inouer includes		alimical trust
				somewhat more		Emeraliza
			and minimize	parameters and		- Expanding
			convergence	that increased		classification
		t	time and handle	model size and		Capabilities
			difficulties with	complexity.		to
			limited training	- Limited to		discriminating
			data.	only one		between
			- Reduce	dataset.		various
			overfitting by	- Lacks of		subtypes of
			using pre-	comparison		breast cancer.
			processing and	with other		
			data	state-of-art		
			augmentation	methods.		
			techniques.			

Performance Metrics Used for Evaluation

The common performance measures, such as Accuracy (ACC), Specificity (SP) and Sensitivity (SE). Additionally, F-measure, Kappa index (Kappa), and Area-under-curve (AUC).

Accuracy (ACC) is a statistical indicator of the percentage of correctly classified labels, ranging from 0 to 100, indicating the effectiveness of the model's classification [5] [19].

Accuracy(ACC)=(Number of correct predictions)/(Total number of predictions) (1)

which also can be write as:-

Accuracy(ACC) = (TP+TN)/(TP+FP+TN+FN).....(2)

Where the parameters for correctness are: -

TP=True Positive (case was positive and

predicted positive)

FP=False Positive (case was negative and

predicted positive)

TN=True Negative (case was positive and

predicted negative)

FN=False Negative (case was negative and

predicted negative)

precision indicates how effectively the model can identify positives in relation to all of its positive predictions [18].

Precision (P)=TP/(TP+FP)(3)

Recall which is additionally known as (True-Positive-Rate (TPR) / Sensitivity (SE)) measures model effectively in categorize "true positives" properly [18].

Sensitivity (SE)TPRRecall=TP/(TP+FN)(4)

Specificity evaluates a classifier's suitability to recognize negative marks.

Specificity (SP)=TN/(TN+FP) (5) [2] [5]

area under curve (AUC) is a graph's calculated through plotting True-Positive-Rate (TPR) against False-Positive-Rate (FPR) [19].

AUC=1/2 - {TP/(TP+FP)+TN/(TN+FP)-}(6) [5]

FPR=FP/((FP+TN))(7) [19]

The F-Measure/ F1 score complements the performance evaluation measure by combining recall and precision evaluations into a single metric [19].

Which also can be write as: -

 $F-Measure = (2 \times TP)/(2 \times TP + FP + FN) \dots (9) [19]$

Kappa, a statistical measure, is considered more reliable than simple accuracy due to its consideration of coincidental agreement, with a 100% probability for perfect categorization, and 0 if it is merely the result of chance [19].

Pe indicates to the theoretical probability of chance agreement given by: -

```
Pe=((TP+FP)\times(TP+FN)+(TN+FP)\times(TN+FN))/ [((TP+TN+FP+FN))]^{2} \dots \dots (11) [19]
```

So, these metrics considered as the most used metrics in image classification.

Challenges and Solutions

This section discusses some common challenges that facing image classification, and proposed solutions.

Dataset Diversity

Classification can be extremely difficult due to the wide variations in images data, inability to obtain images that meet the desired criteria, also Limited data in the dataset.

Solution: - data augmentation techniques play important role for enhancing performance of model [23]. augmentation is a technique for increasing the size of a training dataset using various images "transformations". many techniques have been introduced such as using transformations like random clipping, skew, flip, translation, scaling, rotate and tilting. Another method is to create synthetic pictures using a Generative-adversarial-network (GAN) [24].

Limited Labeled Data

The effectiveness of supervised learning models is hampered by the difficulty and expense of obtaining big, labeled datasets.

Solution: - few-shot learning and semi-supervised learning strategies showing effectiveness in overcoming the lack of labeled data [25].

Overfitting

it is a common issue in supervised machine learning, hindering model generalization. which caused by noise, limited training sets, and classifier complexity.

Solution: - Strategies likes: - early-stopping, network size reduction, data-expansion, regularization, and cross-validation, dropout. aims to prevent overfitting, exclude noises, fine-tune hyper-parameters [1].

Computational Complexit

Complex models that need a lot of processing power, such as CNNs, are harder to use.

Solution: - the use of effective model designs, which are intended to have less computational cost, such as MobileNet and EfficientNet [26].

Limited Performance

Current classification methods might not always reach the required degree of accuracy for each real word scenario.

Solution: - Continuous development led to the emergence different approaches can that greatly improve model performance such as: -

Transfer Learning

Better performance with less data may be achieved by pre-trained models (e.g., AlexNet Model) on particular tasks using large-scale datasets [1].

Hybrid / Ensemble Models

By utilizing the advantages of several techniques, combining several models into an ensemble can improve overall performance [24].

Reinforcement Learning and Semi-Supervised

Deep models are trained using a mix of un-labelled data and little labelled data. This can help with the issue of extremely unbalanced data.

Also, there are more solutions such as illustrated in [24].

Conclusion

In this study, many Image Classification Techniques have been discussed. The Most common techniques can be categories as unsupervised and supervised, conventional machine learning techniques and deep neural network. This research provides theoretical understanding of some the more popular classification techniques to choose the best possible classification strategies for your work. also also examined several challenging issues that come with image classification, such as Dataset Diversity, variability in image data,

limited labeled data, overfitting, computational complexity, and Limited Performance. Each challenge was addressed with a corresponding solution, such as data augmentation, semi-supervised and few-shot learning, efficient model design, transfer learning, Hybrid/ Ensemble models, Reinforcement learning and Semi-supervised, etc. These solutions and continuous research and development, aim to enhance these models, hence facilitating the advancement of increasingly complex and dependable image classification techniques.

References

- Abdullah and M. S. Hasan, "An Application of pre-Trained CNN for Image Classification," in 20th International Conference of Computer and Information Technology (ICCIT), 2017.
- R. S. Chugh, V. Bhatia and K. Khanna, "A Comparative Analysis of Classifiers for Image Classification," in 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2020.
- R. Ponnusamy, S. Sathyamoorthy and K. Manikandan, "A Review of Image Classification Approaches and Techniques," International Journal of Recent Trends in Engineering & Research (IJRTER), vol. 3, no. 3, pp. 1-5, March 2017.
- S. S. Nath, J. Kar, G. Mishra, S. Chakraborty and N. Dey, "A Survey of Image Classification Methods and Techniques," in 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), India, 2014.
- U. Pandey, H. Aneja, D. Jindal and A. Tiwari, "Comparative study of Image Classification Algorithms," International Journal for Modern Trends in Science and Technology, vol. 07, no. 01, pp. 88-92, 2021.
- R. Yadav and A. Singh, "A Comparative Review of Various Approaches for Plant Disease Detection," in 2018 5th
- International Conference on "Computing for Sustainable Global Development", New Delhi (INDIA), 2018. A. Fuduli, P. Veltri, E. Vocaturo and E. Zumpano, "Melanoma detection using color and texture features in computer vision systems," Advances in Science, Technology and Engineering Systems Journal, vol. 4, no. 5, pp. 16-22, 2019.
- M. D. S. Salwa Khalid Abdulateef*, "A Comprehensive Review of Image Segmentation Techniques," Iraqi Journal for Electrical and Electronic Engineering, vol. 17, pp. 166-175, 2021.
- I. Patel and S. Patel, "Analysis of Various Image Segmentation Techniques for Flower Images," JASC: Journal of Applied Science and Computations, vol. 6, no. 2, pp. 1936-1943, February 2019. R. S. R. B. A, M. P, A. Sungheetha and C.Sahana, "Comparative Study of Distinctive Image Classification Techniques," in
- 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 2016.
- S. G. Domadia and D. Zaveri, "Comparative Analysis of Unsupervised and Supervised Image Classification Techniques," in National Conference on Recent Trends in Engineering & Technology, 2011.
- D. M. A. Ali, D. F. Chalob and A. B. Khudhair, "Networks Data Transfer Classification Based on Neural Networks," Wasit Journal of Computer and Mathematic Science, vol. 1, no. 4, pp. 207-225, 2022.
- P. Kumar, S. H. Lai, J. K. Wong, N. S. Mohd, M. R. Kamal, H. A. Afan, A. N. Ahmed, M. Sherif, A. Sefelnasr and A. El-Shafie, "Review of Nitrogen Compounds Prediction in Water Bodies Using Artificial Neural Networks and Other Models," Sustainability, vol. 12, no. 4359, pp. 1-26, 2020.
- A. H. Mohamed, M. Refaat and A. M. Hemeida, "Image classification based deep learning: A Review," Aswan University Journal of Science and Technology, vol. 2, no. 1, pp. 11-35, June 2022.
- E. PEKEL and S. S. KARA, "A COMPREHENSIVE REVIEW FOR ARTIFICAL NEURAL NETWORK," Sigma Journal of Engineering and Natural Sciences, vol. 35, no. 1, pp. 157-179, 2017.
- M. A. S. A. Tobi, R. KP, S. AL-Araimi, R. Pacturan, A. Rajakannu and C. Achuthan, "Machinery Faults Diagnosis using Support Vector Machine (SVM) and Naïve Bayes classifiers," International Journal of Engineering Trends and Technology, vol. 70, no. 12, pp. 26-34, December 2022.
- C. Patgiri and A. Ganguly, "Adaptive thresholding technique based classification of red blood cell and sickle cell using Naïve Bayes Classifier and K-nearest neighbor classifier," Biomedical Signal Processing and Control, vol. 68, pp. 1-8, 2021.
- D. Widyawati, A. Faradibah and P. L. L. Belluano, "Comparison Analysis of Classification Model Performance in Lung Cancer Prediction Using Decision Tree, Naive Bayes, and Support Vector Machine," Indonesian Journal of Data and Science, vol. 4, no. 2, pp. 78-86, 2023.
- S. Zidi, A. Mihoub, S. M. Qaisar, M. Krichen and Q. A. Al-Haija, "Theft detection dataset for benchmarking and machine learning basedclassification in a smart grid environment," Journal of King Saud University -Computer and Information Sciences, vol. 35, no. 1, pp. 13-25, 2023.
- S. Sultana, M. O. F. Redoy, J. A. Nahian, A. K. M. Masum and S. Abujar, "Detection of Abusive Bengali Comments for Mixed Social Media Data Using Machine Learning," PREPRINT (Version 1) available at Research Square, 2023.
- K. ShyrokykhI, M. Girnyk and L. DellmuthI, "Short text classification with machine learning in the social sciences: The case of climate change on Twitter," PLoS ONE, vol. 18, no. 9, pp. 1-26, 2023.
- S. Alam, M. S. Kabir, M. N. Hossain, Q. R. Hasnaine and M. G. R. Alam, "Classification Accuracy Comparison between Machine Learning Algorithms and a Deep Learning Algorithm in Predicting Hand Gestures," in PROCEEDING OF THE 32ND CONFERENCE OF FRUCT ASSOCIATION (FRUCT), Tampere, Finland, 2022.
- C.S. a.T. M. Khoshgoftaar, "A survey on Image Data Augmentation for Deep Learning," Journal of Big Data, vol. 6, pp. 1-48, 2019.
- P. Aggarwal, N. K. Mishra, B. Fatimah, P. Singh, A. Gupta and S. D. Joshi, "COVID-19 image classification using deep learning: Advances, challenges and opportunities," Computers in Biology and Medicine, vol. 144, no. 105350, pp. 1-23, 2022.

- J. Wang, Z. Li, X. Qiao, B. Liu and Y. Zhao, "Semi-Supervised Few-shot Image Classification Based on Subspace Learning," Journal of Physics: Conference Series, vol. 2171, no. 012063, pp. 1-6, 2022.
- Q. L. Mingxing Tan, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," in Proceedings of the 36th International Conference on Machine Learning, PMLR, 2019.
- A. Villa, J. A. Benediktsson, J. Chanussot and C. Jutten, "Hyperspectral Image Classification With Independent Component Discriminant Analysis," IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 49, no. 12, pp. 4865-4876, 2011.
- L. H. Thai, T. S. Hai and N. T. Thuy, "Image Classification using Support Vector Machine and Artificial Neural Network," International Journal of Information Technology and Computer Science, vol. 4, no. 5, pp. 32-38, 2012.
- J. Han, D.-C. Park, D.-M. Woo and S.-Y. Min, "Comparison of Distance Measures on Fuzzyc-means Algorithm for Image Classification Problem," in 2013 AASRI Conference on Intelligent Systems and Control, 2013.
- N. Nayak, H. Chang, A. Borowsky, P. Spellman and B. Parvin, "CLASSIFICATION OF TUMOR HISTOPATHOLOGY VIA SPARSE FEATURE LEARNING," in Proc IEEE Int Symp Biomed Imaging, 2013.
- Q. Li, W. Cai, X. Wang, Y. Zhou and D. D. F. a. M. Chen, "Medical Image Classification with Convolutional Neural Network," in 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 2014.
- C. Affonso, R. J. Sassi and R. M. Barreiros, "Biological image classification using rough-fuzy artificial neural network," Expert Systems With Applications, vol. 42, no. 24, p. 9482–9488, 2015.
- M. Korytkowski, L. Rutkowski and R. Scherer, "Fast image classification by boosting fuzzy classifiers," Information Sciences, vol. 327, pp. 175-182, 2016.
- S. Ranjan, D. R. Nayak, K. S. Kumar, R. Dash and B. Majhi, "Hyperspectral Image Classification: A k-means Clustering Based Approach," in 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2017.
- M. Ramprasath, M. Anand and S. Hariharan, "Image Classification using Convolutional Neural Networks," International Journal of Pure and Applied Mathematics, vol. 119, no. 17, pp. 1307-1319, 2018.
- M. M. krishna, M. Neelima, M. Harshali and M. V. G. Rao, "Image classification using Deep learning," International Journal of Engineering & Technology, vol. 7, no. 2.7, pp. 614-617, 2018.
- S. S. Yadav and S. M. Jadhav, "Deep convolutional neural network based medical image classification for disease diagnosis," Journal of Big Data, vol. 6, no. 113, pp. 1-18, 2019.
- M. A. Abu, N. H. Indra, A. H. A. Rahman and N. A. S. a. I. Ahmad, "A study on Image Classification based on Deep Learning and Tensorflow," International Journal of Engineering Research and Technology., vol. 12, no. 4, pp. 563-569, 2019.
- D. S. Shakya, "Analysis of Artificial Intelligence based Image Classification Techniques," Journal of Innovative Image Processing (JIIP), vol. 02, no. 01, pp. 44-54, 2020.
- A. Gokulalakshmi, S. Karthik, N. Karthikeyan and M. S. Kavitha, "ICM-BTD: improved classification model for brain tumor diagnosis using discrete wavelet transform-based feature extraction and SVM classifier," Soft Computing, vol. 24, p. 18599–18609, June 2020.
- S. Y. Chaganti, I. Nanda and K. R. Pandi, "Image Classification using SVM and CNN," in 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 2020.
- L. Luo, "Research on Image Classification Algorithm Based on Convolutional Neural Network," in Journal of Physics: Conference Series: 2nd International Conference on Applied Physics and Computing (ICAPC 2021), 2021.
- V. A. Gupta, M. Padmavati, R. R. Saxena, P. K. Patnaik and R. K. Tamrakar, "A Study on Image Processing Techniques and Deep Learning Techniques for Insect Identification," Karbala International Journal of Modern Science, vol. 9, no. 2, pp. 328-340, 2023.
- K. Chen, B. Chen, C. Liu, W. Li, Z. Zou and Z. Shi, "RSMamba: Remote Sensing Image Classification with State Space Model," IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1-6, 2024.
- W. WANG, M. GAO, M. XIAO, X. YAN and Y. LI, "Breast Cancer Image Classification Method Based on Deep Transfer Learning," arXiv preprint arXiv:2404.09226v1, 2024.