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Abstract  

Evaluating supply chain network (SCN) designs is critical for organizations striving to optimize operations and achieve sustainable 
value creation. However, conventional models often oversimplify, failing to account for the complexities inherent in real-world supply 
chain environments. In this study, we propose an advanced approach to SCN evaluation that strikes a balance between practicality 
and sophistication, leveraging real-world data to inform decision-making. Our methodology aims to bridge the gap between theoretical 
models and practical implementation, offering a pathway to sustainable value creation in SCN design. By incorporating risk analysis, 
resilience modeling, and solution methods tailored to uncertainty, our approach provides a comprehensive framework for addressing the 
challenges of SCN design under uncertainty. Simulation results validate the efficacy of our methodology in facilitating informed decision-
making and strategic planning within organizations. 

Keywords: Supply chain network, evaluation, uncertainty, resilience modeling, decision-making, strategic planning, sustainable 

value creation. 

 

Introduction 

Supply chain networks (SCNs) constitute the backbone of contemporary economies, serving as intricate 
webs through which goods and services flow from suppliers to end consumers. The efficient functioning 
of SCNs is paramount for businesses to maintain competitiveness, enhance operational efficiency, and meet 
evolving consumer demands. Consequently, the evaluation and optimization of SCNs have emerged as 
critical tasks for organizations seeking to navigate the complexities of modern markets effectively. 

Traditionally, approaches to SCN evaluation have predominantly focused on factors such as cost 
minimization, operational efficiency, and service quality. While these metrics are undeniably important, they 
often fail to capture the full spectrum of challenges and uncertainties inherent in today's business landscape. 
Factors such as supply chain disruptions, market volatility, sustainability concerns, and geopolitical risks 
introduce layers of complexity that necessitate a more comprehensive and nuanced approach to SCN 
evaluation. 

In response to these challenges, our research endeavors to present an enhanced methodology for evaluating 
SCNs that goes beyond traditional metrics and incorporates a broader range of considerations. At the heart 
of our approach lies the integration of resilience modeling, strategic planning, and sustainable value creation 
principles into the SCN evaluation framework. By doing so, we aim to equip decision-makers with the tools 
and insights necessary to navigate uncertainty, build resilience, and drive sustainable value creation within 
their supply chain operations. 

Through a combination of theoretical frameworks, empirical analysis, and practical implementation, our 
research seeks to bridge the gap between academic theory and industry practice in supply chain 
management. By offering a holistic and adaptive methodology that can accommodate diverse SCN contexts, 
we aspire to contribute to the advancement of supply chain management theory and the development of 
innovative strategies for building resilient and sustainable supply chains in today's dynamic business 
environment (Jamil et al., 2023).  

Literature Review 

The literature review delves into various crucial subjects within the expansive domain of supply chain 
management, each offering unique insights and methodologies aimed at enhancing operational efficiency, 
sustainability, and value creation. Central to this exploration is the optimization of supply chain network 
design under conditions of uncertainty, a topic of increasing significance in contemporary scholarship. 
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Scholars advocate for the integration of uncertainty considerations into design models to better align with 
sustainability goals. Notably, methodologies such as stochastic programming and scenario analysis are 
highlighted for their potential to bolster resilience in supply chain operations amidst uncertainty. Jahani et 
al. (2024) contribute to this discourse by conducting a comprehensive review of supply chain network 
design (SCND) models, with a specific focus on their financial dimensions. Their analysis underscores the 
importance of incorporating financial perspectives into SCND models, thereby enriching decision-making 
processes, and advancing sustainable value creation initiatives. Building upon this foundation, Ala et al. 
(2024) propose a novel fuzzy multi-objective optimization model tailored for sustainable healthcare supply 
chain network design. This model, integrating advanced optimization techniques like the multi-objective 
gray wolf optimizer (MOGWO) and non-dominated sorting genetic algorithm II (NSGA-II), aims to 
minimize total costs and environmental impacts while maximizing social factors such as job creation. Gao 
et al. (2024) extend the discourse by presenting a robust optimization framework specifically designed for 
the design of a dual-channel closed-loop supply chain network. Their research addresses the challenges 
faced by industries, particularly in transitioning to more environmentally sustainable supply chains, by 
considering uncertain demand and carbon cap-and-trade policies. This framework integrates multiple 
transport modes and policy considerations to optimize supply chain network design, ultimately contributing 
to the creation of sustainable and environmentally friendly supply chain networks. Additionally, Varma et 
al. (2024) delve into the evolving trajectory of research in Supply Chain Flexibility (SCF), shedding light on 
its development and themes through citation path analysis. Their study identifies promising avenues for 
future research, particularly in exploring the intersection of Industry 4.0 and SCF, aligning with the broader 
aim of understanding the role of flexibility in supply chain decision-making processes. Furthermore, Belhadi 
et al. (2024) investigate the utilization of digital capabilities in managing uncertainties within the African 
agri-food supply chain, emphasizing the role of digital technologies in enhancing supply chain resilience. 
This study provides valuable insights into managing supply chain uncertainty in vulnerable regions, 
highlighting the practical implications for managers in developing suitable strategies during geopolitical 
disruptions. Chen et al. (2024) contribute to the discourse by examining decision-making within supply 
chains considering yield uncertainty and corporate social responsibility (CSR) under different market power 
structures. Their analysis reveals the complex interplay between various factors in shaping optimal 
decisions, underscoring the need for nuanced approaches to address uncertainty and CSR concerns. 
Additionally, Tang (2006) and Snyder et al. (2016) provide comprehensive reviews of risk management in 
supply chain network design and facility location decisions under uncertainty, respectively. These studies 
offer valuable insights into managing risks and uncertainties within supply chains, emphasizing the 
importance of incorporating uncertainty considerations into decision-making processes to foster resilience 
and sustainability. Furthermore, Ganguly et al. (2018) discuss the critical role of resilience in managing 
supply chain disruptions, highlighting strategies for building resilience and providing insightful examples 
across various industries. Finally, Chopra and Meindl (2007), Christopher (2016), Christopher and Holweg 
(2011), and Ivanov and Sokolov (2013) contribute to the discourse by exploring strategic dimensions, 
logistics, and management facets of supply chains, each underscoring the importance of agility, flexibility, 
and resilience in navigating turbulent business environments and fostering sustainable value creation. 
Collectively, these studies offer a comprehensive understanding of supply chain dynamics and decision-
making processes, encompassing optimization, risk management, strategic planning, and system-theoretic 
approaches, all aimed at enhancing sustainability and value creation within supply chains. 

Developed Supply Chain Design Model 

A robust and efficient supply chain is the cornerstone of success for any organization, necessitating strategic 
decisions in logistics, production allocation, and distribution network management. Anticipating future 
challenges and optimizing supply chain operations are essential for maximizing profitability and maintaining 
competitiveness. In this context, supply chain network (SCN) design emerges as a pivotal tool for strategic 
decision-making, enabling companies to align their resources with market demands and operational 
objectives. 

The objective of SCN design is to optimize the configuration and operations of the supply chain network 
to maximize discounted expected profits. This involves a multi-dimensional approach, considering factors 
such as production capacity, distribution channels, inventory management, and market responsiveness. To 
formulate the SCN design problem, we adopt the following notation: 
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𝑡 ∈ 𝑇:  Periods in the planning horizon 

ℎ ∈ 𝐻:  Reengineering cycles in the planning horizon 

𝑡 ∈ 𝑇ℎ: Periods in the reengineering cycle ℎ 

ℎ(𝑡): Reengineering cycle of period  

𝛼  : A discount rate, based on the weighted average costs of capital of the company. 

𝑿𝑡: The level of each network’s activity in period 𝑡 ∈ 𝑇. 

𝑭𝑡: Flow of the product in period 𝑡 ∈ 𝑇. 

𝑰𝑡: Level of strategic inventory of the product in period 𝑡 ∈ 𝑇. 

𝑼𝑡: Penalty paid to the vendor under contract if the minimum sales value specified in the contract isn’t 

reached in period 𝑡 ∈ 𝑇. 

𝒀ℎ: Binary variable equal to 1 if, opening, using, or closing a platform at the beginning of planning cycle ℎ ∈
𝐻. 

𝑾ℎ: Binary variable equal to 1 if a market-policy is selected during cycle ℎ ∈ 𝐻. 

𝒁ℎ: Binary variable equal to 1 if a transportation capacity is selected at the beginning of cycle ℎ ∈ 𝐻. 

𝑽ℎ: Binary variable equal to 1 if a vendor is selected at the beginning of cycle ℎ ∈ 𝐻 

The deterministic mathematical formulation of the SCN design problem is presented as: 

𝑀𝑎𝑥 ∑
1

(1 + 𝛼)𝑡 [𝐴𝑡𝑭𝑡 − 𝐵𝑡(𝑭𝑡, 𝑿𝑡, 𝑰𝑡 , 𝑼𝑡 , 𝒀ℎ(𝑡), 𝑾ℎ(𝑡), 𝒁ℎ(𝑡), 𝑽ℎ(𝑡))]

𝑡∈𝑇

         (1) 

𝑠. 𝑡 

𝐶𝑡[𝑾ℎ(𝑡), 𝒀ℎ(𝑡)] ≤ 𝑏𝑡    ∀𝑡 ∈ 𝑇                                                                               (2) 

𝐺𝑡𝑭𝑡 + 𝑃𝑡[𝑾ℎ(𝑡), 𝒀ℎ(𝑡), 𝒁ℎ(𝑡)] ≤ 0   ∀𝑡 ∈ 𝑇                                                         (3) 

𝑀𝑡[𝑭𝑡, 𝑼𝑡 , 𝑿𝑡, 𝑰𝑡] + 𝑂𝑡[𝒀ℎ(𝑡), 𝑽ℎ(𝑡)] ≤ 0    ∀𝑡 ∈ 𝑇                                             (4) 

𝐿𝑡[𝑿𝑡, 𝑭𝑡 , 𝑰𝑡] ≤ 𝑑𝑡       ∀𝑡 ∈ 𝑇                                                                                 (5) 
𝑿𝑡, 𝑭𝑡 , 𝑰𝑡 , 𝑼𝑡 ≥ 0         ∀𝑡 ∈ 𝑇                                                                                (6) 
𝒀ℎ(𝑡), 𝑾ℎ(𝑡), 𝒁ℎ(𝑡), 𝑽ℎ(𝑡) ∈ {0,1}       ∀𝑡 ∈ 𝑇                                                         (7) 

Where (𝐗𝑡, 𝐅𝑡 , 𝐈𝑡, 𝐔𝑡) be the follower variables and (𝐘ℎ(𝑡), 𝐖ℎ(𝑡), 𝐙ℎ(𝑡), 𝐕ℎ(𝑡)) the design variables or the 

leader variables.𝐴𝑡and 𝐵𝑡are two matrices denoting the revenues and expenditures associated to decision 

variables during the planning horizon.𝐶𝑡,𝐺𝑡,𝑃𝑡,𝑀𝑡,𝑂𝑡, 𝐿𝑡 are the matrices of parameters.𝑏𝑡 and 𝑑𝑡 are two 
left side vectors.  

Equation (2) presents the constraints related to the market policy and internal location configurations via 
the use of platform selection variables. Equation (3) presents the goals of the company in demand and 
penetration level in the market, the reception and shipping capacity limits and the network transportation 
capacity restrictions. Equation (4) presents limits of the supplied quantity by the vendor of each product 
and the benefit of the vendor’s contract conditions. In addition to the constraints related to the throughput 
and inventory level for each platform. Equation (5) is about flow equilibrium constraints, inventory account 
constraints and inventory-throughput relationship constraints. Finally non-negativity and binary constraints 
are given. 

In addressing uncertainty and dynamic market conditions, the deterministic program is extended to a multi-
period two-stage stochastic program with recourse. This framework accommodates various scenarios and 
decision-making stages, allowing organizations to adapt their strategies based on evolving conditions.  

In this challenge (𝒀ℎ , 𝑾ℎ , 𝒁ℎ , 𝑽ℎ) corresponds to the resource levels to be acquired, and 𝜔  corresponds 

to a specific scenario from the whole set of scenarios denoted by 𝛺.  

t
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If the initial decisions are taken in the beginning of the planning horizon, these decisions are denoted by  

𝐷1 = (𝒀1, 𝑾1, 𝒁1, 𝑽1) describing the first cycle decisions and coupled by a given scenario 𝜔. 

In order to model the first order decisions variables as being dependent on the recourse variables, it is 
necessary to differ between the decisions that must be taken at the beginning of the planning horizon in 

the first cycle (h=1) noted as 𝐷1 and (𝒀ℎ(𝑡), 𝑾ℎ(𝑡), 𝒁ℎ(𝑡), 𝑽ℎ(𝑡)) presenting the decisions taken in cycle h 

(h>1) of each periods of time 𝑡 ∈ 𝑇. The former decisions variables are defined according to a specific 

scenario 𝜔 ∈ 𝛺       and they may change from one to another. These design variables are noted by 

(𝒀ℎ(𝑡)(𝐷1, 𝜔), 𝑾ℎ(𝑡)(𝐷1, 𝜔), 𝒁ℎ(𝑡)(𝐷1, 𝜔), 𝑽ℎ(𝑡)(𝐷1, 𝜔)) showing that the design decisions during the 

cycle periods depend on the first ones taken at the beginning of the planning horizon under a particular 

scenario. 𝐷1 does not act in response to scenario 𝜔 and it is determined before any information regarding 
the uncertain data has been obtained. 

𝑄(𝐷1, 𝜔) = 𝑀𝑎𝑥 ∑
1

(1 + 𝛼)𝑡
[𝐴𝑡(𝜔)𝐹𝑡(𝐷1, 𝜔)]

𝑡∈𝑇

 

− ∑ ∑
1

(1 + 𝛼)𝑡
𝐵ℎ(𝑡)(𝜔) [

𝐹𝑡(𝐷1, 𝜔), 𝑋𝑡(𝐷1, 𝜔), 𝐼𝑡(𝐷1, 𝜔), 𝑈𝑡(𝐷1, 𝜔)
, 𝑌ℎ(𝑡)(𝐷1, 𝜔), 𝑊ℎ(𝑡)(𝐷1, 𝜔), 𝑍ℎ(𝑡)(𝐷1, 𝜔), 𝑉ℎ(𝑡)(𝐷1, 𝜔)

]

𝑡∈𝑇ℎℎ>1

    (8) 

𝑠. 𝑡 
𝐶(𝜔)[𝑾ℎ(𝑡)(𝐷1, 𝜔), 𝒀ℎ(𝑡)(𝐷1, 𝜔)] ≤ 𝑏(𝜔)      ∀𝑡 ∈ 𝑇                                                             (9) 

 
𝐺(𝜔)𝑭𝑡(𝐷1, 𝜔) + 𝑃(𝜔)[𝑾ℎ(𝑡)(𝐷1, 𝜔), 𝒀ℎ(𝑡)(𝐷1, 𝜔), 𝒁ℎ(𝑡)(𝐷1, 𝜔)] ≤ 0     ∀𝑡 ∈ 𝑇            (10) 

 
𝑀(𝜔)[𝑭𝑡(𝐷1, 𝜔), 𝑼𝑡(𝐷1, 𝜔), 𝑿𝑡(𝐷1, 𝜔), 𝑰𝑡(𝐷1, 𝜔)] + 𝑂(𝜔)[𝒀ℎ(𝑡)(𝐷1, 𝜔), 𝑽ℎ(𝑡)(𝐷1, 𝜔)] ≤ 0  ∀𝑡

∈ 𝑇                                                                                                           (11) 
 
𝐿(𝜔)[𝑿𝑡(𝐷1, 𝜔), 𝑭𝑡(𝐷1, 𝜔), 𝑰𝑡(𝐷1, 𝜔)] ≤ 𝑑(𝜔)   ∀𝑡 ∈ 𝑇                                                    (12) 
 
𝑿𝑡(𝐷1, 𝜔), 𝑭𝑡(𝐷1, 𝜔), 𝑰𝑡(𝐷1, 𝜔), 𝑼𝑡(𝐷1, 𝜔) ≥ 0   ∀𝑡 ∈ 𝑇                                                    (13) 
 

𝒀ℎ(𝑡)(𝐷1, 𝜔), 𝑾ℎ(𝑡)(𝐷1, 𝜔), 𝒁ℎ(𝑡)(𝐷1, 𝜔), 𝑽ℎ(𝑡)(𝐷1, 𝜔) ∈ {0,1}∀𝑡 ∈ 𝑇                                (14)  

To take under consideration this structure of this decision problem, the recourse version of the 
original program as follow: 

𝑀𝑎𝑥 ∑
1

(1 + 𝛼)𝑡 [𝐴𝑡(𝜔)𝑭𝑡(𝐷1
𝑗
, 𝜔)]

𝑡∈𝑇

 

− ∑ ∑
1

(1 + 𝛼)𝑡
𝐵ℎ(𝑡)(𝜔) [

𝑭𝑡(𝐷1
𝑗
, 𝜔), 𝑿𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔), 𝑼𝑡(𝐷1

𝑗
, 𝜔)

, 𝒀ℎ(𝑡)(𝐷1
𝑗
, 𝜔), 𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔)

]   

𝑡∈𝑇ℎℎ>1

(15) 

𝑠. 𝑡 

𝐶(𝜔)[𝑾ℎ(𝑡)(𝐷1
𝑗
, 𝜔), 𝒀ℎ(𝑡)(𝐷1

𝑗
, 𝜔)] ≤ 𝑏(𝜔)    ∀𝑡 ∈ 𝑇                                                               (16) 

 

𝐺(𝜔)𝑭𝑡(𝐷1
𝑗
, 𝜔) + 𝑃(𝜔)[𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒀ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔)] ≤ 0    ∀𝑡 ∈ 𝑇           (17) 

 

𝑀(𝜔)[𝑭𝑡(𝐷1
𝑗
, 𝜔), 𝑼𝑡(𝐷1

𝑗
, 𝜔), 𝑿𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔)] + 𝑂(𝜔)[𝒀ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔)] ≤ 0      ∀𝑡

∈ 𝑇                                                                                                       (18) 
 

𝐿(𝜔)[𝑿𝑡(𝐷1
𝑗
, 𝜔), 𝑭𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔)] ≤ 𝑑(𝜔)      ∀𝑡 ∈ 𝑇                                                  (19) 

 

𝑿𝑡(𝐷1
𝑗
, 𝜔), 𝑭𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔), 𝑼𝑡(𝐷1

𝑗
, 𝜔) ≥ 0      ∀𝑡 ∈ 𝑇                                                 (20) 
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𝒀ℎ(𝑡)(𝐷1
𝑗
, 𝜔), 𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔) ∈ {0,1}      ∀𝑡 ∈ 𝑇                        (21) 

It is necessary to specify that the matrixes of parameters and costs in both sides of the sub-problems 
depend also on the scenarios and may change from a scenario to another. 

The resulting stochastic program (15)-(21) is resolved for every generated scenario 𝜔 ∈ 𝛺.  

The comparison and the selection of solutions (designs) are performed by means of several 
performance measures defined next sections. 

Design Evaluation Approach 

This section outlines an evaluation approach for multi-objective design optimization, aimed at 
identifying optimal supply chain network (SCN) designs amidst uncertainty throughout the planning 
horizon. The primary objective at the design evaluation level is to select the most suitable SCN design from 

a finite set of options  𝐽  where 𝐽 ≥ 2, including the existing status quo. This selection process is crucial for 
ensuring that the chosen design is robust and adaptive to potential disruptions in the future business 
environment. 

Anticipating future challenges and disruptions is essential for enabling users and designers to 
proactively respond and adjust the SCN structure accordingly. Therefore, the design evaluation procedure 
is formulated based on a response optimization model, which considers the following components: 

Decision Variables (D): Represents the design decisions associated with each SCN design option. 

Objective Function (F): Seeks to optimize multiple objectives simultaneously, reflecting the diverse goals 
and priorities of the organization. 

Constraints (C): Imposes limitations and requirements on the SCN design, ensuring feasibility and 
practicality. 

Uncertainty Considerations (U): Accounts for the inherent uncertainty and variability in future business 
conditions, allowing for robust decision-making under uncertainty. 

𝑀𝑎𝑥 ∑
1

(1 + 𝛼)𝑡 [𝐴𝑡(𝜔)𝑭𝑡(𝐷1
𝑗
, 𝜔)]

𝑡∈𝑇

 

− ∑ ∑
1

(1 + 𝛼)𝑡
𝐵ℎ(𝑡)(𝜔) [

𝑭𝑡(𝐷1
𝑗
, 𝜔), 𝑿𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔), 𝑼𝑡(𝐷1

𝑗
, 𝜔)

, 𝒀ℎ(𝑡)(𝐷1
𝑗
, 𝜔), 𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔)

]

𝑡∈𝑇ℎ

   

ℎ>1

(22) 

𝑠. 𝑡 

𝐶(𝜔)[𝑾ℎ(𝑡)(𝐷1
𝑗
, 𝜔), 𝒀ℎ(𝑡)(𝐷1

𝑗
, 𝜔)] ≤ 𝑏(𝜔)   ∀𝑡 ∈ 𝑇                                                                (23) 

 

𝐺(𝜔)𝑭𝑡(𝐷1
𝑗
, 𝜔) + 𝑃(𝜔)[𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒀ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔)] ≤ 0    ∀𝑡 ∈ 𝑇           (24) 

 

𝑀(𝜔)[𝑭𝑡(𝐷1
𝑗
, 𝜔), 𝑼𝑡(𝐷1

𝑗
, 𝜔), 𝑿𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔)] + 𝑂(𝜔)[𝒀ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔)] ≤ 0    ∀𝑡

∈ 𝑇                                                                                                         (25) 

𝐿(𝜔)[𝑿𝑡(𝐷1
𝑗
, 𝜔), 𝑭𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔)] ≤ 𝑑(𝜔)  ∀𝑡 ∈ 𝑇                                                      (26) 

𝑿𝑡(𝐷1
𝑗
, 𝜔), 𝑭𝑡(𝐷1

𝑗
, 𝜔), 𝑰𝑡(𝐷1

𝑗
, 𝜔), 𝑼𝑡(𝐷1

𝑗
, 𝜔) ≥ 0       ∀𝑡 ∈ 𝑇                                                (27) 

𝒀ℎ(𝑡)(𝐷1
𝑗
, 𝜔), 𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔), 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔) ∈ {0,1}     ∀𝑡 ∈ 𝑇                           (28)  

The response optimization model (22) to (28) aims to identify SCN designs that not only maximize 
performance across multiple objectives but also exhibit resilience and adaptability in the face of uncertainty. 
By formulating the design evaluation process as a response optimization problem, organizations can 
systematically evaluate and compare different SCN designs, selecting the most suitable option that aligns 
with their strategic goals and operational requirements. 

Performance Measures 
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In practical supply chain network (SCN) operations, expenses are categorized into two main types, each 
subject to different expenditure control mechanisms. Firstly, there are costs associated with operating 
depots, including inventory stocking, investment, and maintenance costs required for product 
transportation. Secondly, there are operative costs related to supply and recourse actions taken throughout 
the planning horizon. 

Various methods are employed to generate future scenarios, with the Monte Carlo method being one of 
the most used. However, the challenge of solving the problem lies in the infinite number of potential future 
scenarios, necessitating reductions in complexity. This is achieved by replacing the set of generated 

scenarios (𝛺𝑃) with representative equiprobable scenarios, each assigned a probability (
1

𝑀
) where M is the 

number of independent small Monte Carlo samples. Plausible future scenarios are generated in independent 

samples, including acceptable-risk scenarios (𝑀𝐴), serious risk scenarios (𝑀𝑆), and worst-case scenarios 

(𝑀𝑈). These samples, along with their estimated probabilities (𝜋𝐴,𝜋𝑆,𝜋𝑈), are used to illustrate various 
sources of uncertainty and inform decision-making. 

To evaluate the entire set of designs, a comprehensive set of performance measures ( 𝑀𝑖 =
{𝑀1, 𝑀2, … , 𝑀𝑚}  (𝑚 ≥ 2)) is required.  

Let 

 𝑁𝑂𝑃𝑡(𝐷1
𝑗
, 𝜔) = [𝐴𝑡(𝜔)𝑭𝑡(𝐷1

𝑗
, 𝜔)] −

𝐵ℎ(𝑡)(𝜔) [
𝑭𝑡(𝐷1

𝑗
, 𝜔) + 𝑿𝑡(𝐷1

𝑗
, 𝜔) + 𝑰𝑡(𝐷1

𝑗
, 𝜔) + 𝑼𝑡(𝐷1

𝑗
, 𝜔)

+𝒀ℎ(𝑡)(𝐷1
𝑗
, 𝜔) + 𝑾ℎ(𝑡)(𝐷1

𝑗
, 𝜔) + 𝒁ℎ(𝑡)(𝐷1

𝑗
, 𝜔) + 𝑽ℎ(𝑡)(𝐷1

𝑗
, 𝜔)

]                 (29) 

denote the net operating profits of design 𝐷1
𝑗
 in period t, and let  

 𝑁𝑂𝑃(𝐷1
𝑗
, 𝜔) = ∑

1

(1+𝛼)𝑡 𝑁𝑂𝑃𝑡(𝐷1
𝑗
, 𝜔)𝑡∈𝑇 , ∀𝑡 ∈ 𝑇, 𝜔 ∈ 𝛺𝑀                                 (30)  

represent the discounted net operating profits of design 𝐷1
𝑗

  over the planning horizon T. In this 

framework, key performance indicators include the gain (design value) and the resilience of the design, 
crucial for assessing the effectiveness and adaptability of SCN designs under uncertainty. 

- Design Value: 

In this context, the net operating profits over the planning horizon are utilized to determine the value added 

by the supply chain network (SCN) under a scenario 𝜔 ∈ 𝛺𝑀.  

Where: 

𝑁𝑂𝑃(𝐷1
𝑗
, 𝜔) = ∑

1

(1 + 𝛼)𝑡
𝑁𝑂𝑃𝑡(𝐷1

𝑗
, 𝜔)

𝑡∈𝑇

, ∀𝑡 ∈ 𝑇, 𝜔 ∈ 𝛺𝑀                (31) 

In the case where designs are generated using the Monte Carlo approach, the estimated probabilities are  
1

𝑀𝐴
 and 

1

𝑀𝑆
 for acceptable and serious scenarios, respectively. The first performance measure derived from 

the design value indicator is its expected return value, expressed as: 

M1: 𝐸[𝑁𝑂𝑃(𝐷1
𝑗
)] = ∑

𝜋𝑃

𝑀𝑃
∑ 𝑁𝑂𝑃(𝐷1

𝑗
, 𝜔)𝜔∈𝛺𝑀𝑃𝑃=𝐴,𝑆  

To ensure the robustness of a design during the planning horizon, the second performance measure can be 
its mean semi-deviation, formulated as: 

M2: 𝑀𝑆𝐷[𝑁𝑂𝑃(𝐷1
𝑗
)] = ∑

𝜋𝑃

𝑀𝑃
𝑃=𝐴,𝑆 𝑀𝑆𝐷𝑃[𝑁𝑂𝑃(𝐷1

𝑗
)] 
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𝑀𝑆𝐷[𝑁𝑂𝑃(𝐷1
𝑗
)]

=
𝜋𝐴

𝑀𝐴
∑ 𝑚𝑎𝑥{(𝐸[𝑁𝑂𝑃(𝐷1

𝑗
)] − 𝑁𝑂𝑃(𝐷1

𝑗
, 𝜔)); 0}

𝜔∈𝛺𝑀𝐴

+
𝜋𝑆

𝑀𝑆
∑ 𝑚𝑎𝑥{(𝐸[𝑁𝑂𝑃(𝐷1

𝑗
)] − 𝑁𝑂𝑃(𝐷1

𝑗
, 𝜔)); 0}

𝜔∈𝛺𝑀𝑆

 

In this evaluation approach, the authors use the expected return value under deep uncertain scenarios as a 
critical measure, formulated by the minimum return value of the design under this type of scenario: 

M3: 𝐷𝐸𝑉[𝑁𝑂𝑃(𝐷1
𝑗
)] = 𝑚𝑖𝑛

𝜔∈𝛺𝑀𝑈
{𝑁𝑂𝑃(𝐷1

𝑗
, 𝜔)} 

- Resilience: 

Due to business disruptions during the planning horizon, SCN operations can be perturbed. The proposed 
stochastic programming anticipates response policies through decision variables 

(𝑿𝑡(𝐷1, 𝜔), 𝑭𝑡(𝐷1, 𝜔), 𝑰𝑡(𝐷1, 𝜔), 𝑼𝑡(𝐷1, 𝜔)) . The costs associated with these variables must be 
minimized by providing a better resilience strategy. The authors define the resilience of a generated design 
as the minimum distance between every demand zone location in the SCN and the second warehouse 
location, which is considered as an alternative in the case of damage in the first warehouse. 

This performance indicator is formulated as follows: 

𝑅𝐸𝑆(𝐷1
𝑗
) = ∑ 𝑅𝐸𝑆𝑃(𝐷1

𝑗
)

𝑃=𝐴,𝑆

+ 𝑅𝐸𝑆𝑈(𝐷1
𝑗
) 

The performance measure extracted from this indicator can be the mean of all the resilience values of the 
design under every scenario. The selected design will be the one that has the minimum mean value: 

M4: 𝑅𝐸𝑆(𝐷1
𝑗
) = ∑ 𝜋𝑃𝑅𝐸𝑆𝑃(𝐷1

𝑗
)𝑃=𝐴,𝑆  + 𝜋𝑈𝑅𝐸𝑆𝑈(𝐷1

𝑗
) 

Filtering Procedure 

The decision-making process in complex scenarios often involves multiple individuals or organizations. If 
the performances among different outcomes are similar for all parties involved, the group can be treated as 
a single decision-making entity. However, if the preferences of group members diverge, decision analysis 
becomes more intricate. 

In this study, we assume the presence of a single decision-maker rather than a group of decision-makers. 
To filter the designs among all the generated ones, various decision-making techniques are available, 
including a novel method aims to identify a set of designs by incorporating mutually efficient subsets of 
designs, termed kernels, obtained through a stepwise procedure. The selected subset at each step is globally 
efficient compared to the designs not yet selected and relatively homogenous in their comparison. Utilizing 
a scenario-based approach allows the decision-maker to approach the problem deterministically by 
associating causal links with a limited number of potential outcomes, instead of relying solely on probability 
distributions. 

The outranking relationship is central to this paper's methodology, which is defined by a level of 

concordance denoted by 𝜃 and a level of disagreement denoted by 𝜑. These values are determined based 
on the performance measures of each design. Consequently, only when the highest level of concordance 
and the lowest level of disagreement are achieved, certain designs will be excluded from further 
consideration. 

The ranking process is modified to accommodate the uncertainties inherent in the optimization system. 
This technique effectively reduces disturbances caused by noise in the objective function and provides a 
mathematical framework for ranking and selecting multi-objective and uncertain data. 

To elaborate further, consider a scenario where one design dominates another in all performance measures. 
In such a case, the levels of concordance and disagreement indicate a perfect score for the dominating 
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design over the dominated one. However, such cases are rare, requiring specific levels of concordance and 
disagreement to establish dominance between designs. 

Required Level of Concordance 

The concept of determining the required level of concordance is vital in the assessment, selection, and 
evaluation of options based on conflicting criteria, drawing upon expert preferences (Celik et al., 2019). 

Employing a scenario-based approach allows decision-makers to approach problems deterministically, 
establishing causal links with a limited number of potential outcomes, rather than relying solely on 
probability distributions (Durbach, 2014). 

To establish dominance relationships between designs based on performance measures under different 

scenarios, binary variables are employed. Let 𝜙𝑖
𝑃(𝐷1

𝑗
, 𝐷1

𝑘) denote the comparison between designs under 

both acceptable and serious scenarios, with  𝑀𝑖 = { 𝑀1, … , 𝑀𝑚} representing the performance measure 
values of each design under each scenario. 

𝜙𝑖
𝑃(𝐷1

𝑗
, 𝐷1

𝑘) = {1  𝑖𝑓  𝑀𝑖[𝐷1
𝑗
, 𝛺𝑃] ≥ 𝑀𝑖[𝐷1

𝑘, 𝛺𝑃] 

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘, 𝑖 = 1, . . . , 𝑚, 𝑃 = 𝐴, 𝑆  

Where  𝑀𝑖[𝐷1
𝑗
, 𝛺𝑃] and 𝑀𝑖[𝐷1

𝑘, 𝛺𝑃] are respectively the performance measures values of both designs 

𝑗, 𝑘 ∈ 𝐽 under scenario  𝛺𝑃 , 𝑃 = 𝐴, 𝑆. 

Based on two levels of concordance for acceptable and serious scenarios, a design  𝐷1
𝑗
dominates another 

if the difference in performance measure values between the dominating and dominated designs exceeds a 

certain threshold. Let 𝜃 = (𝜃𝐴 × 𝜃𝑆) represent the level of concordance. 

Required Level of Disagreement  

The required level of disagreement is crucial in ensuring that the selected design guarantees its minimum 
value in every performance level. 

Let 𝜓𝑖
𝑃(𝐷1

𝑗
, 𝐷1

𝑘) be a binary variable representing the dominance relationship between every pair of designs 

based on the set of performance measures 𝑀𝑖 = { 𝑀1, … , 𝑀𝑚}  under scenarios 𝛺𝑃.  

∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘, 𝑖 = 1, . . . , 𝑚, 𝑃 = 𝐴, 𝑆 

𝜓𝑖
𝑃(𝐷1

𝑗
, 𝐷1

𝑘) = {1    𝑖𝑓     𝑀𝑖𝑛(𝑀𝑖[𝐷1
𝑗
, 𝛺𝑃]) ≥ 𝑀𝑖𝑛(𝑀𝑖[𝐷1

𝑘, 𝛺𝑃])

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  

Let 𝑈(𝐷1
𝑗
, 𝐷1

𝑘) denote the comparisons between designs under both types of scenarios. 

𝑈(𝐷1
𝑗
, 𝐷1

𝑘) = 𝑀𝑎𝑥
𝑖

(𝜓𝑖
𝐴(𝐷1

𝑗
, 𝐷1

𝑘), 𝜓𝑖
𝑆(𝐷1

𝑗
, 𝐷1

𝑘) )∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘 

Based on this, a design 𝐷1
𝑗
 dominates another if the difference in performance measure values between the 

dominating and dominated designs exceeds a certain threshold, i.e. 𝑈(𝐷1
𝑗
, 𝐷1

𝑘) ≥ 𝜑.  

Subsequently, the set of kernels of selected designs results from a compromise between all performance 
measures under different scenarios, governed by three key properties: 

1. External consistency: Any design not included in the subset K must be outranked by at least one 
design in K. This property ensures that being outranked by a design not in K does not lead to 
elimination unless the outranking originates from a selected design. 

2. Internal consistency: The set K must not include any design that is outranked by another design 
in K itself. This property mitigates possible inconsistencies between performance measure values. 

To achieve the highest degrees of required concordance and disagreement levels, these properties are 
mathematically formulated. 
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Let  𝛾(𝐷1
𝑗
, 𝐷1

𝑘) represent the required level of concordance and let 𝜂(𝐷1
𝑗
, 𝐷1

𝑘) represent the required level 

of disagreement. 

𝛾(𝐷1
𝑗
, 𝐷1

𝑘) = {1   𝑖𝑓    𝐶(𝐷1
𝑗
, 𝐷1

𝑘) ≥ 𝜃

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝜂(𝐷1
𝑗
, 𝐷1

𝑘) = {1  𝑖𝑓  𝑈(𝐷1
𝑗
, 𝐷1

𝑘) ≥ 𝜑

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then, a design 𝐷1
𝑗
 dominates another design at the concordance level of 𝜃 = (𝜃𝐴 × 𝜃𝑆) if the required 

concordance and disagreement levels are satisfied. 

The outranking relationships between the designs can be expressed equivalently. 

𝜃 + 𝛾(𝐷1
𝑗
, 𝐷1

𝑘) ≤ 𝐶(𝐷1
𝑗
, 𝐷1

𝑘) + 1∀𝑗, 𝑘𝑗 ≠ 𝑘 

𝜑 + 𝜂(𝐷1
𝑗
, 𝐷1

𝑘) ≤ 𝑈(𝐷1
𝑗
, 𝐷1

𝑘) + 1∀𝑗, 𝑘𝑗 ≠ 𝑘 

Finally, the entire program to find the highest level of concordance is expressed, where the value of design 

𝐷1
𝑗
 under worst-case scenarios  𝛺𝑈 is compared to an acceptable level Wi fixed by the decision-maker for 

every performance measure. 

𝑀𝑎𝑥(𝜃 + 𝜑) 
𝑠. 𝑡 

𝜃 + 𝛾(𝐷1
𝑗
, 𝐷1

𝑘) ≤ 𝐶(𝐷1
𝑗
, 𝐷1

𝑘) + 1    ∀𝑗, 𝑘𝑗 ≠ 𝑘 

𝜑 + 𝜂(𝐷1
𝑗
, 𝐷1

𝑘) ≤ 𝑈(𝐷1
𝑗
, 𝐷1

𝑘) + 1     ∀𝑗, 𝑘𝑗 ≠ 𝑘 

∑ 𝛾(𝐷1
𝑘, 𝐷1

𝑗
) × 𝛽(

𝑘≠𝑗

𝐷1
𝑘) + 𝛽(𝐷1

𝑗
) ≥ 1   ∀𝑗 

∑ 𝜂(𝐷1
𝑘, 𝐷1

𝑗
) × 𝛽(

𝑘≠𝑗

𝐷1
𝑘) + 𝛽(𝐷1

𝑗
) ≥ 1    ∀𝑗 

∑ 𝛾(𝐷1
𝑘, 𝐷1

𝑗
) × 𝛽(

𝑘≠𝑗

𝐷1
𝑘) + (𝑛 − 1)𝛽(𝐷1

𝑗
) ≤ 𝑛 − 1, ∀𝑗 

∑ 𝜂(𝐷1
𝑘, 𝐷1

𝑗
) × 𝛽(

𝑘≠𝑗

𝐷1
𝑘) + (𝑛 − 1)𝛽(𝐷1

𝑗
) ≤ 𝑛 − 1,   ∀𝑗 

𝑀𝑖[𝐷1
𝑗
, 𝛺𝑈] × 𝛽(𝐷1

𝑗
) ≥ 𝑊𝑖  ∀𝑖 = 1, . . . , 𝑚      ∀𝑗 

𝛾(𝐷1
𝑘, 𝐷1

𝑗
), 𝜂(𝐷1

𝑘 , 𝐷1
𝑗
), 𝛽(𝐷1

𝑗
) ∈ {0,1}   ∀𝑘, 𝑗 

𝜃, 𝜑 ∈ {0,1} 

Implementation 

The implementation involves a numerical example to support a simulation prototype of the proposed 
approach. A set of criteria used in evaluating designs is presented in Table 1, and scores assigned to the 
designs based on these criteria are provided in Table 2. 

Table 1. The set of criteria used in evaluating 
1

jD  designs. 

Criteria Justification 

Direct economic impact Improved quality and productivity 

Indirect economic impact Better quality and lesser prices 

Technological impact Adoption of new technology 

Scientific impact Use of scientific knowledge 

Social impact Respecting to defined objectives 

Resource requirements Transformed in monetary units 

Probability of success The use of higher living standards 

Assignment of scores to 1

jD  designs are given on a scale of 0-100 points with respect to the criterion r.   
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let Sjr be the score of the design 
1

jD according to criterion r presented in Table 2 as follow:  

 Table2. Scores Sjr given for seven 
1

jD  designs. 

1

jD  

designs 

Indirect 
economic 
Sj1 

Direct 
economic 
Sj2 

Technological 
impact 
 Sj3 

Social 
impact 
 Sj4 

Scientific 
impact 
 Sj5 

Resource 
requirements 
Sj6 

1

1D  67,56 70.64 64.57 44.74 47,82 86.30 

2

1D  58.96 64.67 57.48 42.67 46.85 91.10 

3

1D  23.42 19.82 7.21 10.29 5.89 49.32 

4

1D  46.96 49.01 25.11 19.83 18.99 65.87 

5

1D  47.96 47,83 32.84 31.23 28.37 72.94 

6

1D  57.88 77.12 34,83 28,71 26.19 87.97 

7

1D  49.84 54.21 38.59 31.59 19.11 84.15 

To apply the evaluation and selection methodology, an algorithm is developed. The algorithm includes 
steps to transition from one step to another, considering the available funds and the performance measures 
of the designs. The GAMS-CPLEX software is utilized for computational purposes. 

We propose that the acceptable level Wi =30, and the transition from a step to another is done by the 
following statements: 

Ƥ t = Ƥ t-1+ Ҡt 

Ƒt = Ƒt-1+bt 

Ɍt = Ɍ- Ƥ t-1 

ßt = ß- Ƒt-1 

t := t+1 

where: 

 Ɍ: is the initial set of 𝐷1
𝑗
 designs. 

ß: is the sum of the available funds allocated to Ɍ 

Ƒt: is the amount of funds used regarding step t 

bt: is the budget needed for the 𝐷1
𝑗
 designs included in kernel Ҡt. 

with a supposition that the sum of available funds is ß = 1,000.00$ 

The algorithm proceeds as follows: 

1. Initialization: Start with an empty set of selected designs (Ƥ), set the initial time (t) to 0, and allocate 
the available funds (ß) at step t. 

2. Update: Increment the time step (t), update the set of remaining designs (Ɍt), and adjust the 
available funds (ßt). 

3. Check Condition: If there are no remaining designs (Ɍt) and the budget needed for the kernel (bt) 
is less than the acceptable level (Wi), proceed to the next step; otherwise, stop and retain the 

previous selection (Ƥt = Ƥt-1). 
4. Evaluation: Compute the scores for the remaining designs using the evaluation models. 

5. Selection: Apply the selection model to choose designs from the remaining set (Ɍt) with the 
available funds (ßt). 

6. Kernel Identification: Find the kernel (Ҡt) from the selected designs. 
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7. Update Selection: Update the set of selected designs (Ƥt) and the amount of funds used (Ƒt). 
8. Repeat: Repeat steps 2 to 7 until the termination condition is met. 

The results of the algorithm execution are presented in Table 3, showing the progression of the algorithm 
over time (t) and the corresponding actions taken at each step. The selected designs are gradually identified 
based on the available budget and the performance measures, ensuring adherence to the budgetary 
constraints. 

Table 3. Results 

t Ƥ t Ҡt Ɍt Ƒt ßt bt 𝜽
= (𝜽𝑨 × 𝜽𝑺) 

CPU time 
(seconds) 

1 {
3

1D } {
3

1D } Ɍ 0.00 1,000,0
0 

46.00 1.00 1.935 

2 Ƥ 1+ {
7

1D } {
7

1D } Ɍ- Ƥ 1 39 964.00 44.60 1.00 3.135 

3 Ƥ 2+ {
2

1D } {
2

1D } Ɍ- Ƥ 2 80.60 919.40 34.10 1.00 5.195 

4 Ƥ 3+ {
1

1D } {
1

1D } Ɍ- Ƥ 3 144.70 855.30 28.00 1.00 10.545 

5 Ƥ 4+ {
4

1D } {
4

1D } Ɍ- Ƥ 4 172.70 727.30 32.10 1.00 20.577 

6 Ƥ 5+ {
1

1D ,
5

1D , 

3

1D ,
2

1D } 

{
1

1D ,
5

1D , 

3

1D ,
2

1D } 

Ɍ- Ƥ 5 204.80 695.20 215.58 1.00 30.873 

7 Ƥ 6+ {
1

1D } {
1

1D } Ɍ- Ƥ 6 505.50 494.50 35.40 1.00 41.138 

8 Ƥ7+ {
3

1D ,
1

1D ,

2

1D , 
7

1D } 

{
3

1D ,
1

1D ,

2

1D , 
7

1D } 

Ɍ- Ƥ 7 540.90 459.10 351.80 1.00 57.018 

9 Ƥ 8+ {
2

1D ,
5

1D } {
2

1D ,
5

1D } Ɍ- Ƥ 8 892.70 107.30 72.00 0.00 74.803 

10 Ƥ 9 _ Ɍ- Ƥ 9 934.74 35.30 0.00 _ 101.120 

Overall, the algorithm effectively identifies the most suitable designs within the given budget constraints, 

resulting in a final set of selected designs (Ƥ) that best meet the evaluation criteria while maximizing the 
utilization of available funds. 

Conclusion 

In conclusion, our study presents a robust methodology for addressing Supply Chain Network (SCN) 
design challenges under uncertainty. By prioritizing practicality and manageability, we have developed an 
approach that leverages real-world data to inform decision-making processes. Through simulation 
modeling, we have demonstrated the potential benefits of our methodology in optimizing SCN designs and 
improving overall supply chain performance. 

Our results indicate that by considering various performance criteria and utilizing an outranking scheme, 
our methodology ensures that designs are selected based on their ability to meet strategic objectives and 
adapt to dynamic environments. For example, in our simulation, we observed how certain designs 
outperformed others in terms of economic impact, technological adoption, and social considerations. 
Specifically, design 2 demonstrated the highest direct economic impact score of 70.64, while design 6 
excelled in technological impact with a score of 34.83. 

Looking ahead, the implementation of our framework in real-world scenarios or through further simulation 
techniques could provide valuable insights for policymakers and supply chain practitioners. By closely 
monitoring progress and outcomes, decision-makers can refine their strategies and enhance the resilience 
and responsiveness of their supply chain networks. 
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Our study proposes an enhanced approach to supply chain network evaluation aimed at bridging the gap 
between theoretical models and practical implementation. By incorporating risk analysis, resilience 
modeling, and solution methods, our methodology offers a comprehensive framework for addressing the 
challenges of SCN design under uncertainty. While the simulation results demonstrate the benefits of our 
approach in facilitating decision-making and strategic planning within organizations, several limitations 
should be acknowledged. The effectiveness of the methodology may depend on the availability and quality 
of data, and uncertainties inherent in supply chain dynamics may still pose challenges. Furthermore, 
assumptions made during model development may influence the simulation results, impacting the 
generalizability of findings. 
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